
MLWizard Documentation

available on-line under: https://www.madm.eu/rapidminer/mlwizard

Matthias Reif

July 26, 2012

Abstract

MLWizard is a tool supporting non-experts in developing classifica-
tion system within RapidMiner. For a given data set, it automatically
recommends, constructs, and optimizes a classification process. The user
is guided in three simple steps from its dataset to a ready-to-use classifi-
cation system.

MLWizard implements several meta-learning methods. Based on the
knowledge about many datasets, it predict the accuracy of different clas-
sification algorithms for the given dataset. Additionally, it provides an
improved genetic optimization for the most important parameters of the
classifiers by replacing the random start population with already promis-
ing solutions.

1 Installation

The easiest for installing MLWizard is to download it over the RapidMiner
update mechanism. For this you click on Help ⇒ Update RapidMiner in the
menu bar and select MLWizard for installation. After the automatic installa-
tion and a restart of RapidMiner, the functionality of MLWizard is available in
RapidMiner.

Alternatively, you can also download and install MLWizard manually from
the website1. Download the archive and extract its content to the lib/plugins

folder of your RapidMiner installation.
The source can be compiled using ant and the the provided build.xml There-

fore, you need to have the RAPIDMINER HOME environment variable set to
your RapidMiner location or you have to adjust the build.xml file and set the
rm.dir variable correctly. Then, you can create the MLWizard jar-file by:

1 : $ ant c r ea t eJa r

1https://www.madm.eu/rapidminer/mlwizard

1

2 Usage

The wizard can be found within the Tools menu in the menu bar of RapidMiner:

Step 1: Dataset Selection

First, a dataset has to be selected from any repository of RapidMiner:

Step 2: Evaluation Selection

After the dataset has been analyzed, the predicted accuracies of the classifiers
are shown. Now, the classifier that should be actually evaluated on the dataset
have to be selected:

2

Step 3: Classifier Selection

The evaluation of the classifiers may take some time. After it is finished, the
computed accuracies are shown and the classifier on which basis the classification
system should be constructed has to be selected:

System Construction

Finally, the system is constructed automatically. If a classifier has been chosen
that was also evaluated, the optimized parameter values have been already set.
Otherwise, default values are used.

3

Meta-features

It is also possible to look at the meta-features of the datasets. These are the
properties of the dataset used for the classifier recommendation and the param-
eter optimization.

4

3 API

The implementation of MLWizard is divided into core functionality and the
GUI components. The three main functionalities of MLWizard can also be
easily accessed via an API.

Sample Usage

1 ExampleSet datase t = . . . // e . g . us ing RapidMiner f i l e r eade r s
2 KnowledgeBase knowledgeBase = KnowledgeBase . read () ;
3 // p r ed i c t i n g the a c cu r a c i e s o f a l l inc luded c l a s s i f i e r s
4 Regres s ionResu l t r e s u l t = Regre s s i one r . p r ed i c t (knowledgeBase , datase t) ;
5 // eva lua t ing a s e t o f c l a s s i f i e r s
6 Evaluator eva luato r = new Evaluator () ;
7 I t e r ab l e<C l a s s i f i e r > c l a s s i f i e r s = . . . // e . g .

knowledgeBase . g e t C l a s s i f i e r s ()
8 Map<C l a s s i f i e r , ParameterSet> r e s u l t = eva luato r . eva luate (c l a s s i f i e r s ,
9 r e s u l t . metaFeatures , knowledgeBase , dataset , nThreads) ;

10 // con s t ruc t i ng the f i n a l system
11 St r ing path = . . // path where the datase t was read from
12 Process p roce s s = SystemConstructor . c r ea t eProc e s s (c l a s s i f i e r ,

parameterSet , path) ;

The API reference documentation (Javadoc) is included into the release and
can be found on-line2.

Accuracy Prediction

The accuracy prediction takes a dataset and a knowledge base and returns a
result object that contains the predicted accuracies for all classifiers and the
computed meta-features of the dataset.

1 pr ed i c t (KnowledgeBase knowledgeBase , ExampleSet datase t) :
Regre s s ionResu l t

Evaluation

The optimization takes mainly three arguments: a knowledge base, a list of
classifiers, the dataset, and the meta-features of the dataset. The result are the
optimized parameter values for all considered classifiers.

1 eva luate (I t e r ab l e<C l a s s i f i e r > c l a s s i f i e r s , Example queryMetaFeatures ,
KnowledgeBase knowledgeBase , ExampleSet dataset , i n t nThreads ,
Eva luat i onL i s t ene r eva l ua t i onL i s t en e r) : Map<Str ing , ParameterSet>

System Construction

Finally, the system construction takes a classifier, its parameter values to use,
and the location of the dataset. The result is a RapidMiner process.

1 c r ea t eProc e s s (C l a s s i f i e r c l a s s i f i e r , ParameterSet parameterSet , S t r ing
datase tLocat ion) : Process

2http://www.dfki.uni-kl.de/~reif/mlwizard_javadoc/

5

Knowledge Base

Additionally, it is possible to modify the knowledge base, that serves as a basis
for all meta-learning methods. It is easily possible to add new datasets and
classifiers. If a new dataset is added, all existing classifiers will be evaluated
on this dataset. Analogically, if a new classifier is added, it is evaluated on all
included datasets. The resulting performance values and optimized parameter
values are added to the knowledge base as well in order to improve further
meta-learning runs.

The knowledge base included in the jar-File can be loaded very easily:

1 KnowledgeBase knowledgeBase = KnowledgeBase . read () ;

Meta-Features

The computation of the meta-features for a dataset can be accessed via the ac-
cording RapidMiner Operator included in the MLWizard release. The operator
can be used within the GUI and programmatically.

1 MetaFeaturesOperator metaFeaturesOperator =
OperatorServ ice . c reateOperator (MetaFeaturesOperator . c l a s s) ;

2 ExampleSet metaFeatures = metaFeaturesOperator . apply (datase t) ;

6

4 Command Line Interface

MLWizard can be used via the command line, as well. It will be started using
the provided jar-file:

1 : $ java −cp /path/ to / rapidminer . j a r : / path/ to /MLWizard . j a r
de . d f k i .madm. mlwizard . c l i . CommandLineInterface <dataset> <task>
[o u t f i l e]

The first argument is the path to the dataset in XRFF-format that will be
used as input. The second argument is the task that should be performed and
can be one of the following:

wizard runs the complete wizard

metafeatures computes the meta-features

recommend recommends classifers

evaluate evaluates all classifiers

construct constructs the classification system

The third argument is optional and defines where the results are written to.
The result depends on the task and might be meta-features, a parameter set or
a RapidMiner pipeline. If no file is supplied, the results are written to stdout.

Sample Session

1 : $ java −cp rapidminer . j a r :MLWizard . j a r
de . d f k i .madm. mlwizard . c l i . CommandLineInterface i r i s . x r f f wizard
r e s u l t . xml

2 [0] k−NN 0.87
3 [1] Rule Induct ion 0 .87
4 [2] Neural Net 0 .87
5 [3] SVM 0.86
6 [4] Dec i s i on Tree 0 .84
7 [5] Naive Bayes 0 .79
8 Enter comma separated numbers o f c l a s s i f i e r s you want to be eva luated :
9 0 ,1 ,2

10 [0] k−NN 0.97
11 k−NN. weighted vote t rue
12 [1] Rule Induct ion 0 .96
13 Rule Induct ion . c r i t e r i o n in f o rmat i on ga in
14 [2] Neural Net 0 .98
15 Neural Net . decay f a l s e
16 [3] SVM <not evaluated>
17 [4] Dec i s i on Tree <not evaluated>
18 [5] Naive Bayes <not evaluated>
19 Enter number o f c l a s s i f i e r you want a system f o r :
20 2

The created RapidMiner pipeline will be stored in result.xml and can be im-
ported into Rapidminer.

7

