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Abstract

Pattern Recognition and Machine Learning techniques usually involve data- and
compute-intensive methods. Applying such techniques therefore often is very time-
consuming and requires expert knowledge. In this context, the state-of-the-art soft-
ware RapidMiner already provides easy to use interfaces for developing and evaluat-
ing Pattern Recognition and Machine Learning applications. However, it has only
limited support for parallelization and it lacks functionality to spread long-running
computations over multiple machines. A solution to this is distributed computing
with paradigms like MapReduce.

This thesis deals with the development and evaluation of a system which inte-
grates distributed computing frameworks into RapidMiner. A special focus is put on
utilizing MapReduce as a programming model. The software frameworks Hadoop,
GridGain and Oracle Coherence are reviewed and evaluated with respect to their
suitablility to �t into the context of RapidMiner. The developed system provides ef-
fective means for transparently utilizing these frameworks and enabling RapidMiner
processes to parallelize their computations within a distributed environment.

The systems applicability and practicability is demonstrated on two Machine
Learning techniques arising from Concept Detection in Videos with the Bag-of-
Visual-Words approach: Interest Point Extraction in video frames and k-Means
clustering. Evaluations show that the system is able to accelerate these processes by
utilizing multiple cores and machines. Furthermore, using GridGain and Coherence
as distributed framework within the system can lead to nearly linear speedup with
the number of machines.
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Chapter 1

Introduction

1.1 Motivation

Today, Pattern Recognition and Machine Learning techniques are found in many ap-
plications like face and object recognition in videos and images, speech recognition
as given in mobile phones, or optical character recognition (OCR) for the automatic
digitization of scanned documents. Because of their great potentials and wide us-
age in many areas, Pattern Recognition and Machine Learning are also subject of
large interest in academics and research. Nonetheless, applying theses techniques
usually both requires professional expertise in the �eld of Machine Learning, as
well as software engineering skills in order to integrate into real world applications.
Furthermore, the development and adaptation of Pattern Recognition and Machine
Learning systems most often di�er to those of traditional software systems, since
the methods used in such systems are data-driven, i.e. their performance strongly
depends on the problems and domains they are applied to.

In this context, the project PaREn [7], which is initialized by the German Re-
search Center for Arti�cial Intelligence (DFKI) and funded by the Federal Ministry
of Education and Research, aims to �nd ways to support and automatize devel-
opment, evaluation and application of Pattern Recognition systems. Furthermore,
carrying out these processes should be feasible with respect to execution time of
the computations involved. However, especially in Pattern Recognition and Ma-
chine Learning settings this goal proves challenging, since one often faces very large
and heterogenous data sets which have to be processed, and the techniques and
algorithms used often require a vast amount of computation time. This leads to sit-
uations in which one machine is no longer su�cient and scaling to multiple machines
becomes necessary.

One solution to this problem is distributed computing. Nowadays, there exist
complex systems and software tools which make performant and reliable compu-
tation and distribution of data possible on multiple machines, even scaling to big
data centers. Furthermore, programming models like MapReduce [11] - a divide
& conquer approach applied to distributed computing - aim to foster utilization
and integration of distributed systems into real world applications. Nonetheless,
distributed computing remains challenging in many aspects and is far from being
easy to handle, even for experts. This particularly holds true when applying it to
complex tasks as arising from Pattern Recognition and Machine Learning setups.

One tool box, which aims to provide state of the art and easy to use Machine
Learning and Data Mining components, is RapidMiner [37]. This open source soft-
ware is an integral part of PaREn, as it provides intuitive and easy to use interfaces
for handling heterogenous data sets and for constructing Pattern Recognition and

13



14 CHAPTER 1. INTRODUCTION

Machine Learning systems. However, RapidMiner lacks support for distributed
computing capabilities. In opposite to this, there exist a variety of distributed com-
puting software like Hadoop [3], GridGain [20] and Oracle Coherence [34], which
already have been successfully used for enabling applications to scale in distributed
environments and to increase their performance. An ideal situation would be to have
the well-suited Machine Learning interfaces of RapidMiner combined with the bene-
�ts of using distributed computing software to scale on multiple machines. However,
integrating these tools is not trivial and usually requires detailed knowlegde about
the frameworks and a lot of experience with distributed systems in general.

In summary, it can be said that bringing together the techniques of Pattern
Recognition and Machine Learning with the capabilities of distributed computing
in a performant and comprehensible manner is a di�cult task, but becomes manda-
tory, especially when considering the constantly growing amounts of information
in todays world of internet and large scale applications. Projects like PaREn, as
well as existing Pattern Recognition and Machine Learning applications, can bene-
�t from these approaches by making their underlying processes scalable and more
performant.

1.2 Thesis Objectives

The main subject of this thesis is the exploration of opportunities for applying
distributed computing to Pattern Recognition and Machine Learning techniques.
It is examined in which way such a combination can lead to signi�cant speed up of
these techniques. In this context, a special focus is put on the popular MapReduce
paradigm as a possible programming model for distributed computing. It shall be
demonstrated how it can be applied to Pattern Recognition and Machine Learning
algorithms, and which problems arise in this context.

The thesis takes place in the context of PaREn, which uses RapidMiner as basis
tool. Thus, the main goal is to elaborate ways for integrating distributed computing
software into RapidMiner. As a result of this, a system shall be developed which
seemlessly can be embedded into RapidMiner and by this enables di�erent compo-
nents of RapidMiner to make use of multicore capabilities and multiple machines,
making them more performant and scalable. An emphasis of the development lies
on the utilization of MapReduce as a programming model for the system. The
system shall be easy to use, both for Machine Learning developers, as well as for
RapidMiner users.

In order to prove the applicability of the system, di�erent use cases shall be built
up on it. A prominent use case in Pattern Recognition and Machine Learning, as
well as in the context of PaREn, is Concept Detection in Videos. One important
technique in this �eld is the Bag-of-Visual-Words approach, which includes two
methods which shall be considered for application to the developed system: Interest
Point Extraction from video frames and the k-Means clustering algorithm, which is
responsible for codebook generation.

1.3 Thesis Outline

In chapter 2, mandatory and useful background topics and issues of this thesis are
explained. This includes an introduction into Pattern Recognition and Machine
Learning in general, as well as an overview of the project PaREn. Furthermore,
principles of distributed computing and distributed systems are shown, including a
classi�cation of two types of distributed systems, and giving an introduction into
the MapReduce paradigm. In the third part, a presentation and an overview of
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the used software libraries is given, on the one hand RapidMiner as the Pattern
Recognition and Machine Learning tool, on the other hand Hadoop, GridGain and
Oracle Coherence as distributed computing software. At last, the chapter includes
an introduction into the use case of Concept detection, including a small overview
of the techniques of Interest Point Extraction and k-Means clustering.

Chapter 3 deals with the development of the distributed system and its inte-
gration with RapidMiner. First, the requirements for the systems are identi�ed
and explained. In the second part, there is a discussion about the distributed com-
puting libraries, which is done with respect to the requirements. After this, the
developed system is presented. The components of the system, its functionality,
and its integration within RapidMiner are demonstrated. It is also shown how the
system is realized by using the di�erent distributed computing libraries. After that
a demonstration is given on how the system can be applied on the methods Interest
Point Extraction and k-Means clustering.

In chapter 4, the system is evaluated with respect to computation performance.
Di�erent experiments are conducted, which prove the practicability of the developed
system by reference to the use cases of Interest Point Extraction and k-Means
clustering. It is shown that the developed system leads to performance gains when
applied to these methods. The results of the thesis are concluded and summarized
in the last chapter, in which also several ideas for future work are proposed.
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Chapter 2

Background

This chapter covers the background topics and issues which are mandatory and
useful for a profound understanding of the contents of this thesis. First, a de�ni-
tion is given about Pattern Recognition and Machine Learning in general, followed
by an introduction into the project PaREn, which is concerned with the issues of
Pattern Recognition and Machine Learning. Second, an introduction and overview
in distributed computing is given. This includes a comparison of Computational
Grids and Data Grids, as well as an introduction into the MapReduce program-
ming paradigm. The third part presents the software libraries used in this thesis,
i.e. RapidMiner, Hadoop, GridGain and Oracle Coherence. At last, there will be
an introduction into Concept Detection in Videos using the Bag-of-Visual-Words
approach. Bag-of-Visual-Words will serve as a use case for PaREn and especially
for this thesis.

2.1 Pattern Recognition and Machine Learning

2.1.1 De�nition

The idea of Pattern Recognition especially in computer science is concerned with
the automatic discovery of regularities in data through the use of computer algo-
rithms and with the use of these regularities to take actions on it [6]. Usually the
discovered regularities - also called patterns - are used to construct models in order
to represent real world circumstances. Based on these models, which can be seen
as approximations of the real world, possible actions are the classi�cation of data
into di�erent categories or making predictions based on observed data [2].

The models themselves are normally described with the aid of parameters and
can be adapted by changing these parameters. The experience of the last decades
has been that the most e�ective methods for constructing models and developing
classi�ers involve learning from example patterns [13]. The corresponding tech-
niques, which are referred to as Machine Learning, usually include large amounts
of training data or past experience in order to perform their task: the optimization
of model parameters with respect to speci�c classifying problems.

The methods used for Pattern Recognition and Machine Learning often tend
to be very complex, both in terms of comprehension and computation time. The
project PaREn, which is described in the next section, is concerned with the issues
of developing Pattern Recognition systems. Di�erent aspects of these development
processes are described, especially the reason is pointed out why these processes
demand a lot of computation time.
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18 CHAPTER 2. BACKGROUND

2.1.2 PaREn

Pattern Recognition and Machine Learning are already used in many specialty ap-
plications such as spam classi�cation, OCR (Optical Character Recognition) and
ad placement [7]. Many functions and behavior of these applications are man-
ually constructed rules that require programming skill, software engineering and
extensive testing in order to create and make reliable. The respective code is often
developed on a case-by-case basis by specialists. Furthermore, the methods for de-
veloping, training and testing Pattern Recognition and Machine Learning modules
di�er greatly from those of other software systems since the underlying methods are
data-driven methods and often change behavior signi�cantly for many input pat-
terns in response to new training data, both properties not shared by �traditional�
software systems.

The project PaREn (Pattern Recognition Engineering), which is initialized by
the German Research Center for Arti�cial Intelligence (DFKI) and funded by the
Federal Ministry of Education and Research, tries to �ll this gap between Pattern
Recognition, Machine Learning and software engineering. Its goal is to create the
methods and tools necessary allowing non-experts to use, train, test, and deploy
pattern recognition and Machine Learning modules in real-world software systems.

A big obstacle of the adoption and integration of Pattern Recognition and Ma-
chine Learning methods into real-world software systems is the mathematical com-
plexity and sophistication required for adapting them to particular problems. Those
methods usually have many parameters representing concepts which are often not
very meaningful to developers, and their behavior is highly sensitive to how the un-
derlying Pattern Recognition modules are interconnected. In this context, PaREn
set itself to support the development and adaptation of Pattern Recognition systems
in real-world environments by pursuing three di�erent goals:

� develop better theories of robustness, self-adaptation, and self-supervision of
Pattern Recognition methods.

� develop technologies for automating and supporting model construction and
selection in real-world settings, especially as part of whole Pattern Recognition
system pipelines.

� develop easy-to-use tools for supporting con�guration management, testing,
and integrating.

Especially the second goal is central to this thesis. Therefore the following
paragraphs survey the di�erent steps involved when designing a Pattern Recognition
system. This also includes construction and selection of models. Figure 2.1 further
illustrates the whole design process1.

1. Preprocessing The foundation of a Pattern Recognition system is some given
raw data which often has to be prepared �rst by applying application speci�c pre-
processing algorithms. For example, document images usually have to be binarized
before performing OCR or layout analysis. In other scenarios input data may be
incomplete due to missing values, but the applied Machine Learning techniques do
not accept incomplete data sets. A preprocessing step would �ll those gaps e.g. by
averaging or using other appropriate statistical methods. Preprocessing steps may
also clean up data sets from outliers or noise. Finding and applying the right meth-
ods for preprocessing has e�ect on further steps of a Pattern Recognition system.

1Duda et al. interpret design cycles for Pattern Recognition systems in a similar way [13].
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Figure 2.1: Design cycle of a Pattern Recognition system. [7]

2. Feature Selection In general, the patterns to be recognized and classi�ed are
represented by measurements referred to as features. The compositions of di�erent
kinds of features, also called feature vectors, de�ne points in a multidimensional
feature space. In order to classify objects, an appropriate set of features has to
be selected. These features are expected to satisfy certain aspects: they should be
distinguishing enough for the objects in the domain, invariant to irrelevant trans-
formations of the input data, and compact in dimensionality in order to reduce
memory consumption and computation time. Furthermore they should be easy to
extract and insensitive to noise. The choice may involve prior knowledge of the
problem domain, but �nding appropriate features is often not straight forward and
often leads to lengthy evaluations.

3. Model Selection The performance of a classi�er also depends on the model
which is used to approximate the real-world conditions. The better the approxi-
mation, the better the classi�cation rate or prediction is. But for di�erent problem
domains, some class of models may approximate the real-world better than oth-
ers. Also the amount and quality of available example data are crucial, since some
classes of models are more robust against noisy data than others. Furthermore per-
formance requirements and explanation-awareness may play a role when selecting
a model.

4. Training, Testing and Optimization After having selected a classi�cation
algorithm it will be evaluated on example data. Therefore it has to be applied on a
subset, also called training data. The result of this training step is a model which
has to be evaluated in a subsequent testing step by using a subset referred to as
test data.
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The classi�cation algorithm or model may be adjustable by di�erent parameters.
One goal is to select optimal parameter values with respect to classi�cation rate.
Existing techniques for performing this parameter optimization for example include
grid search or evolutionary computation. According to those techniques, parameter
optimization often requires to repeat training and testing many times to evaluate
di�erent parameter values.

Even with appropriate parameters the evaluation results may not be satisfying,
i.e. classi�cation performance may not be su�cient. This may indicate an inappro-
priate design of other parts of the pipeline. The model generation procedure may
then be reconsidered and one or many of the former steps of preprocessing, feature
extraction and model selection may be altered. Training, Testing and Optimization
will then be repeated for the modi�ed pipeline. Altogether, the design of a Pattern
Recognition system naturally follows a cyclical approach.

As one can imagine, the computation time for each step may become very long,
depending on the used techniques. Especially the large number of repititions of
training and testing during parameter optimization results in huge computational
e�orts. Since one of PaREn`s goals is the automation of design cycles and parameter
optimization, it is worth to think about options to accelerate the execution of the
individual steps. In some cases, this might even be necessary to make a whole
automatized design process feasible in practice.

One way to make the used Machine Learning techniques more performant is
introducing parallelization into them. By this they can be enabled to make use of
many processors, and even many processing machines at the same time. This is
where the idea of distributed computing applies.

This thesis, as a part of PaREn, deals with the issues of accelerating Pattern
Recognition and Machine Learning with the aid of distributed computing. Its goal is
to develop a system which enables such techniques to utilize distributed computing
techniques. More precisely, this thesis aims to integrate the Machine Learning
library RapidMiner, which is the main tool for PaREn, with distributed computing
software. The next section covers the relevant topics of distributed computing,
whereas RapidMiner and di�erent distributed computing frameworks are presented
in section 2.3.

2.2 Distributed Computing

Nowadays, not only server machines, but also desktop computers are standardly
equipped with multicore processors. However, algorithms and applications do often
not make use of the potential speedup which can be achieved by parallelization, and
developing software which e�ciently utilizes multicore capabilities proves challeng-
ing [35]. The same holds true when thinking of multiple machines connected over
some local network or the internet. Aspects like communication and synchroniza-
tion, consistency and replication, fault-tolerance and security [43] are even more
di�cult to handle within a distributed and heterogenous environment.

Nonetheless, many distributed computing software and middleware exist which
provide e�cient means to build distributed applications and enable them to scale
on multiple machines. In many cases, these distributed systems make the execution
of intensive computations and the processing of large amounts of data feasible in
the �rst place.

In the context of this thesis, it is helpful to distinguish two types of such dis-
tributed systems: Computational Grids and Data Grids [38]. The term grid is re-
ferring to the practice of Grid Computing [5], which has become a popular paradigm
in the �eld of distributed computing during the last two decades. By a de�nition of
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Ian Foster and Carl Kesselman, the Grid is a hardware and software infrastructure
which allows reliable, consistent, easy-to-reach and cheap access to the capacities
of high performance computers [16]. In this thesis, di�erent distributed computing
frameworks are considered, which in many ways �t into this abstract concept of
grids. These frameworks, namely Hadoop, GridGain and Oracle Coherence, are
presented in 2.3. All of them aim to provide facilities to build up infrastructures
which span multiple machines and allow the reliable and easy access to the ca-
pacities of these machines. In this sense these frameworks can be possible basis
technologies for doing Grid Computing. The further distinction between Compu-
tational and Data Grids is made to emphasize the di�erence between distributed
systems which in �rst place deal with the management of computation processes in
a distributed environment, and others which concern themselves with the appropri-
ate management and provision of data. Both Computational Grids and Data Grids
include several aspects which are relevant for the discussions in the following chap-
ters. These aspects are introduced and explained in the following subsections. The
distinction between both is taken up in this thesis to classify the used distributed
systems and components.

Another important subject in this thesis is the MapReduce paradigm. Having a
reliable distributed software infrastructure can be the prerequisite to scale applica-
tions on multiple machines. However, �nding ways to parallelize application logic
and mapping it to the functionality of a distributed computing framework usually is
a di�cult task. MapReduce is a programming model which aligns to the principles
of divide & conquer approaches and by this provides an intuitive interface to map
applications onto it and enable them to utilize distributed computing environments.
The characteristics of MapReduce and its applicability to Pattern Recognition and
Machine Learning techniques are examined in this thesis. Therefore, this section
includes a general introduction into this topic.

2.2.1 Computational Grids and Data Grids

In general one can distinguish two di�erent categories of grids: Computational
Grids and Data Grids [38]. A Computational Grid allows to take computations,
optionally split them into multiple parts, and execute them on di�erent processing
nodes in the grid in parallel. A processing node in this sense is a machine or some
other kind of processing unit, a grid de�nes a cluster of connected processing units.
The bene�t is that the computation may perform faster due to the parallel use
of resources from all processing nodes in the grid. Computational Grids improve
overall scalability and fault-tolerance of systems by o�oading computations onto
most available nodes. A common design pattern used in a Computational Grid is
MapReduce, which is described in the next subsection. Some of the requirements a
Computational Grid should meet are explained in the following.

� Load Balancing. Proper load balancing is crucial for system performance.
There are many ways to perform load balancing, for example by picking nodes
randomly for new jobs, by following a Round Robin algorithm, or by adapting
load balance depending on the performance of individual nodes. The major
goal is to distribute the workload in a way that jobs optimally utilize the
existing processing nodes, not leaving any of them idle for a longer time.

� Fault-Tolerance. The reliability of a Computational Grid strongly depends
on how failures are handled within the grid. If a processing node crashes or
the job causes some failure, the execution should be rescheduled to another
node and re-executed automatically. This failover mechanism should work
transparently to the user.
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� Automatic Deployment. Newly developed application software should be
automatically deployed on all nodes of a grid without any extra steps from
the developer. Automatic deployment not only boosts productivity in devel-
opment processes by avoiding time-consuming installation and con�guration
steps on all processing nodes, but it also increases reliabilty, since manual
deployment rather tends to induce faults into a distributed application.

� Data Grid Integration. Since most applications process data and therefore
depend on e�cient access to it, compute grids should integrate seamlessly with
adequate data grids and utilizing their features within their control mecha-
nisms.

A Data Grid allows to distribute data across the cluster of machines. A main
goal of a Data Grid is to provide fast access to the data, which could for example
be achieved by providing as much data as possible from main memory on each
processing node. Furthermore it should ensure coherency of data accross the grid.
Further requirements a Data Grid should meet are explained in the following.

Figure 2.2: Data a�nity of jobs in a distributed computing environment [42].

� Data A�nity. An important aspect of distributed data processing is the
locality of computations and corresponding data. If nodes often have to fetch
data from other nodes in order to run the jobs which have been assigned
to them, network bandwidth becomes a bottleneck for overall system perfor-
mance. Therefore, Data Grids should o�er functionality for locating compu-
tation to corresponding data. Figure 2.2 demonstrates how jobs are aligned
to corresponding data.

� Data Replication. The performance of data access strongly depends on
the selected replication strategy. Data may be fully replicated to all nodes,
which fosters access time, but consumes most resources. Another strategy
assumes a �xed number of replica per data unit. More sophisticated strategies
may adapt the replication factor depending on access rate of individual data.
Others may involve network topology to ensure e�cient balancing of data in
order to reduce network tra�c.

� Data Backups. Replication of data is not only crucial to allow quick ac-
cess, but also to avoid data loss due to node failures. If a node crashes for
some reason, the data should be backed up and immediately be accessable on
another node.
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In this thesis, three di�erent distributed computing frameworks are presented,
which mostly satisfy the conditions mentioned above and therefore can be seen
as Grid Computing frameworks. The Hadoop framework both implements Com-
putational and Data Grid functionalities. The other frameworks are GridGain and
Coherence. The former one can be seen as Computational Grid middleware, whereas
the latter can be classi�ed as a Data Grid solution. The frameworks themselves are
described in section 2.3.

2.2.2 MapReduce

MapReduce is a programming model and a software framework which has been
introduced in [11] and patented by Google [12]. The main goal is to have a simple
programming interface which supports distributed computing on large data sets
on clusters of computers. The core idea, which is following a divide & conquer
approach, is to have a map function, which is applied on parts of the input data,
and to have a reduce function which then aggregates the results of the map step.
The idea is inspired by functional programming, where usually a map is used to
apply a function on each element of a list, whereby a reduce construct aggregates a
list to a single value2. Even though it is �awed in some places [26], this comparison
gives a good impression of how MapReduce works.

Since a map is thought to be applied independently on each data element of the
input list, many map tasks may be executed at the same time in parallel. This is
where the interface provides support for distributed computing. In the proposed
programming model also the reduce step is abstracted in a way that there may be
many reduce tasks which run in parallel. The programming model is described in
more detail in the following.

Programming model

The input to the computation is split before and given as a list of key/value pairs
I = [(k11 , v11), ..., (k1n

, v1n
)], the output produced also is a list of key/value pairs.

The user of a MapReduce framework de�nes the two functions map and reduce.
The map function takes one key/value pair as input and produces a list of interme-
diate key/value pairs:

map(k1i
, v1i

) −→ [(k21 , v21), ..., (k2m
, v2m

)]

The intermediate key/value pairs of all map steps are then grouped by their keys.
The resulting lists are passed in form of key/value-list pairs to the reduce function:

reduce(k2j , [v2j1, ..., v2j l]) −→ v3.

For each key, the reduce function aggregates the input list and returns one value
as output. Figure 2.3 demonstrates the data �ow of a MapReduce computation.

Examples

A typical example to illustrate a MapReduce computation is the word count ex-
ample. The input data is a large collection of documents, for which the number of
occurrences for each word are counted. In this function the map emits each word of
a document with an associated count of occurrences. The reduce step sums together
those counts for each word to obtain the total count for a particular word. A Java
implementation for the map and reduce steps would be similar to this:

2One example are the built-in functions map and reduce in the python programming language
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Figure 2.3: MapReduce: First the input data is split and each part is processed
independently by a map function. The results of the map steps are aggregated by
a reduce step [26].

Listing 2.1: Example for a map and a reduce function. The word occurrences of a
collection of documents are counted.

public void map(String key, String value){
// key: document name
// value: document content
for (String word : value.split(" ")){

emitIntermediate(word, new Integer(1));
}

}

public void reduce(String key, Iterator values){
// key: a word
// values: a list of counts
Integer sum = 0;
while (values.hasNext()){
sum += (Integer) values.next();

}
emit(sum);

}

Other examples include a distributed large scale grep implementation, the con-
struction of reverse web-link graph or building an inverted index [11]. There are
many algorithms and tasks which can be formulated in terms of maps and reduces.
If one can solve a problem by following a divide & conquer approach, then it is often
also expressible as a MapReduce computation. Especially in the �elds of Pattern
Recognition and Machine Learning there are many algorithms and tasks which can
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be modi�ed to �t into the MapReduce concept [10, 19]. Thus, by adapting those
algorithms and tasks one may take bene�t of an underlying distributed system and
accelerate computations which otherwise would take much longer.

Implementation

The idea of dividing a task into sub-tasks, executing them in parallel and merg-
ing the results in the end is by no means invented by Google [25]. Nonetheless,
MapReduce has gained huge popularity in industry and science, since Google could
demonstrate the ease of using this pattern and that it provides a highly e�ective
means of attaining massive parallelism in large data- centers [11]. To achieve this,
Google`s implementation of the MapReduce framework provides solutions for dif-
ferent important aspects of distributed systems, which are hidden to the user. Any
implementation of MapReduce should consider these aspects. In the following,
three of them are described, namely Load Balancing, Fault Tolerance and Locality
Optimization. These correspond to the same-titled aspects described in the con-
text of Computational and Data Grids in the previous subsection. The following
explanation focuses on these issues in the context of MapReduce.

� Load Balancing. Before executing a MapReduce computation, the program
is copied to the machines of the cluster. Exactly one copy of the program
de�nes the master, which is responsible for organizing the distributed com-
putation. This includes the assignment of map and reduce tasks to worker
nodes. Every time a worker node becomes idle, the master node assigns a
new map or reduce task to it. Thus, a load balancing is achieved, since each
machine receives a new task when new capacity becomes available.

� Fault Tolerance. In large clusters of hundreds or thousands of computers one
has permanently to deal with crashes or machines that are not reachable. To
recognize possible failures of individual nodes, the master pings every worker
periodically. Workers which do not respond in a certain amount of time are
marked as failed. The task will then be rescheduled to another worker. This
failover mechanism is essential for the reliability of a MapReduce system.

� Data a�nity. One bottleneck of MapReduce usually is network bandwidth.
Therefore one goal of a MapReduce implementation should be to reduce net-
work tra�c, not only for messaging, but especially for data transfer. Thus, it is
important that the input data already is stored locally on the machines where
the computation takes place, or in other words, to bring the computation to
the data, not vice versa. This data a�nity plays a key role for performance
in a MapReduce framework. Google achieves this by using its Google File
System (GFS) [18]. This distributed �le system divides each �le into 64 MB
blocks and stores several copies of each block on di�erent machines. Due to
this replication mechanism, the master node can take the locality of input
blocks into account when assigning map tasks to a worker. If one worker node
fails, the task will be rescheduled to a machine which owns a replica of the
input data block. Totally viewed, most of the time the input data is read
locally and therefore does not consume network bandwidth.

2.3 Software

In this section, the di�erent software libraries used in this thesis are presented.
This includes an introduction into the Pattern Recognition and Machine Learning
library RapidMiner, as well as into the distributed computing frameworks Hadoop,
GridGain and Oracle Coherence.
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2.3.1 RapidMiner

The PaREn project uses the data mining tool RapidMiner 5.0 [37] (formerly YALE )
as basis for building Pattern Recognition systems. RapidMiner focuses on rapid
prototyping for knowledge discovery, Data Mining and Machine Learning systems.
Its goal is to support maximal re-use and innovative combination of existing methods
[31]. To achieve this, RapidMiner provides a variety of existing methods, including
di�erent input and output mechanisms, state of the art Machine Learning methods
as well as facilities for data processing and feature space transformation. Especially
the o�ered evaluation and meta optimization methods are important for PaREn,
since they support the selection of suitable components for a Pattern Recognition
system. Additionally RapidMiner provides a range of visualization tools like plots
of data or experiment results.

Since RapidMiner follows the paradigm of visual programming and provides an
XML interface for storing processes, it allows easy construction and automated ex-
ecution of Pattern Recognition processes. Processes in RapidMiner are expressed
as a combination of �operators�, which are connected as a directed graph. In Rapid-
Miner, which is entirely implemented in Java, each operator extends the class Op-
erator, which essentially represents a method as mentioned above. An operator
usually expects some input data on which it performs a de�ned action, and delivers
some output which then again may serve as input for other operators. The graph
structure de�nes the data �ow within a process. Figure 2.4 demonstrates a typical
process graph as presented by the RapidMiner GUI.

Figure 2.4: A typical Rapidminer process: k-Means clustering on a data set. The
resulting cluster model is used for assigning samples of another set to their nearest
clusters.

Input and output data passed between operators implement the interface IOOb-
ject, which especially ensures them to be serializable. All data objects in RapidMiner
can therefore be persisted and transfered.

Machine Learning and Data Mining methods usually use data sets consisting of
sample vectors, which may have nominal or numerical component values. Rapid-
Miner includes the interface ExampleSet. Implementing classes represent a data set,
which is essentially a table of multi-dimensional sample vectors. Since ExampleSet
also extends the IOObject interface, it can be used as input and output data for
Machine Learning and Data Mining operators.

As outlined before, the main goal is to introduce parallelization and distributed
computing into PaREn processes. Since RapidMiner is the basis tool for PaREn,
this thesis also builds up on RapidMiner. The main focus will be on the inte-
gration of RapidMiner and di�erent frameworks for distributed computing. This
especially involves the extension, implementation and usage of RapidMiner classes
and interfaces like Operator, IOObject and ExampleSet.
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2.3.2 Hadoop

The Apache project Hadoop [3] develops open-source software for reliable, scalable,
distributed computing. The Hadoop framework, which is written in Java, enables
applications to work with thousands of processing nodes and petabytes of data. It
includes a MapReduce implementation and a distributed �le system (HDFS) which
are both inspired by Google`s MapReduce and GFS publications. According to the
categories of grid systems presented in 2.2.1, the HDFS can be classi�ed as Data
Grid, whereas the MapReduce part manages the computational aspects.

Hadoop is being used and built by established contributers [21], including AOL,
Amazon.com, Facebook, IBM and many others. Especially Yahoo! caused sensation
by building web search and advertising applications upon Hadoop, running it on a
10.000 core Linux cluster, using over 5 Petabytes disk space [33].

Figure 2.5: HDFS: The name node manages the �le system. The data nodes ensure
replication and local access on data [3].

HDFS The Hadoop Distributed File System (HDFS) is a distributed �le system
designed to run on commodity hardware. The goals of HDFS are to be highly fault
tolerant and to ensure high throughput of large scale data sets. The former one
is achieved by replication of data on several storage nodes, similar to the GFS.
Each �le in the �le system is stored by deviding it into blocks (usually 64MB in
size), which are replicated and distributed between so called data nodes. The data
nodes are able to communicate with each other to copy and rebalance the data
across the cluster. Since hardware failure is a norm in big clusters of hundreds or
thousands of machines, each block redundantly exists three times in the cluster by
default3. Thus, failure of a data node would normally not result in loosing data.
The �le system is managed by exactly one name node. It stores meta data about
the number and position of blocks and to which �le they belong. A client who wants

3Typically two blocks in the same rack, one block in another one.
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to read data only receives the position of a block and therefore does not have to
transfer the data over the name node, but receives it directly from the corresponding
data node. Figure 2.5 illustrates the collaboration of name nodes and data nodes
within a HDFS cluster. HDFS also provides interfaces for applications to make use
of data a�nity. This minimizes network congestion and further increases the overall
throughput of the system. In general, high throughput is crucial to HDFS since it
focuses on the support of batch processing on large data sets rather than interactive
�le access. Therefore, HDFS should not be seen as a usual �le system but rather
as data set system [24]. According to that view, �les usually are very large in size,
typically giga- or terabytes.

MapReduce The MapReduce component in Hadoop is very close to the pro-
gramming model proposed by Google. It is built upon HDFS, so the input data is
usually directly read from the distributed �le system. The implementation uses the
data a�nity features of HDFS to ensure having maps applied locally on the input
and therefore to gain throughput.

In Hadoop, a MapReduce computation is called a job, whereas computing a
simple map or reduce is called a task. Hadoop`s MapReduce is designed as a mas-
ter/slave architecture. Similar to the master node in Google`s proposal, Hadoop
runs a Job Tracker on one node of the cluster, which manages the execution of a
whole MapReduce job. The Job Tracker sends map and reduce tasks to so called
Task Trackers in order to be done, striving to perform the work on those nodes on
which the data resides or at least as close as possible to them.

2.3.3 GridGain

GridGain [20] is an open source Grid Computing framework, which focuses on easy
development and deployment of Grid Computing and Cloud application software.
It is pureley written in Java, and is a software middleware that allows to develop
complex grid applications on the cloud infrastructure [14]. In the context of Grid
Computing, it can be seen as Computational Grid, since its main focus is on man-
aging computational tasks within a distributed environment, and explicitely leaves
data management to underlying Data Grids.

GridGain has support for MapReduce like computations because it includes
a MapReduce implementation which is similar to the one proposed by Google,
but less complex. It reduces itself to split a task in several sub-tasks, executes
them on di�erent grid nodes, and �nally aggregates the results within a single step.
Google`s MapReduce is more abstract, since it allows several reduce steps because
of its intermediate key/value-pair mechanism. Furthermore, Google`s MapReduce
is completely data driven, whereas GridGain as a Computational Grid focuses on
the computational aspects of task splitting in the �rst place. In reverse to Hadoop,
the overall MapReduce computation is called a Task, whereas a single map is done
by a Job.

GridGain is designed as a Computational Grid and therefore is optimized with
respect to crucial aspects of these kind of grids (see also 2.2.1). It follows a higly
modular design and therefore is very �exible. It is made up of several services
implementing so called service provider interfaces (SPI). For example, grid nodes
�nd each other on the network by using a discovery service, which implements
the GridDiscoverySpi interface. The default implementation uses IP-multicast for
discovering other nodes. But there are other implementations to make use of or to
integrate with frameworks like Coherence (see 2.3.4), JBoss4, JGroups5 and JMS6,

4http://www.jboss.org
5http://www.jgroups.org
6http://java.sun.com/products/jms/

http://www.jboss.org
http://www.jgroups.org
http://java.sun.com/products/jms/
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but also e-mail based discovery is possible. Similar to GridDiscoverySpi there are
other service provider interfaces covering issues like communication, deployment,
load balancing, fail-over, collision, checkpoint and topology resolution. For all of
these GridGain provides several implementations.

In this way GridGain also integrates with several established middleware frame-
works out of the box. Communication in GridGain for example is realized with
TCP/IP connections by default. But as in the discovery-example, GridGain also
includes implementations for Coherence, JGroups, JMS and others, in order to reuse
their communication protocols and to run on top of existing grid environments.

As stated in section 2.2.1, a Computational Grid should allow automatic deploy-
ment of new software. GridGain achieves this by its P2P-class-loading mechanism.
A grid developer does not have to copy newly written Java classes or archives to
every node by hand or even has to restart the nodes. New classes are P2P-loaded
at deployment time from the remote node which initialized the task.

GridGain not only supports distribution in terms of MapReduce, but o�ers
general Grid Computing facilities. This includes the execution of single task within
the whole grid, which are not parallelized in a MapReduce manner. The location of
execution thereby is chosen transparently to the user, but with respect to the work
load found on individual nodes.

Since GridGain is a Computational Grid, it does not provide data distribution
in terms of a Data Grid. But its designed to easily integrate with di�erent Data
Grids. Escpecially for MapReduce it is important that computation is located near
to data (compare 2.2.2). Therefore GridGain provides the GridA�nityLoadBal-
ancingSpi. Implementations for this interface support data a�nity for MapReduce
jobs. Depending on the kind of underlying data distribution or the used Data Grid,
di�erent GridA�nityLoadBalancingSpi implementations can be chosen to ensure
an e�cient distribution of sub-tasks with respect to the location of data.

In this thesis, GridGain is always considered in conjunction with Oracle Coher-
ence as underlying Data Grid. GridGain provides integration with Coherence out of
the box. As Coherence is an in-memory distributed cache, the data can be accessed
very fast. Coherence is described in the following subsection.

2.3.4 Coherence

Coherence is a commercial distributed memory data management solution o�ered
by Oracle [34]. It provides a reliable distributed data tier with a single, consistent
view of the data. This data tier, also called Distributed Cache, represents itself
as a key/value-store, which is partitioned and/or fully replicated across several
processing nodes.

Caching is a concept especially known from the area of hardware in form of
memory caches. A cache transparently arranges frequently used data to be fastly
accessible for a processing component. A Distributed Cache is a form of caching
which allows the cache to span multiple servers so that it can grow in size and trans-
actional capacity [23]. Data can be stored in the Distributed Cache on one node,
and transparently received from the Distributed Cache on another node. Usually
data in a distributed cache is kept in main memory to allow fast access. In prac-
tice a main memory cache is layered above some background persistent storage like
a database or a �le system. It therefore reduces tra�c between application and
storage, which arises from communication and serialization issues. Operations on
cached data will be done with respect to the underlying background storage. When
reading data which has not been cached before, it will be fetched from storage. Writ-
ing data can be handled synchronously or asynchronously by using write-through
or write-behind mechanisms. A further advantage of a cache is transparent eviction
of data. If there are too many objects in the cache and therefore the cache is at
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risk of over�ow, it automatically evicts selected objects and writes them back to the
background storage. Usually a cache supports di�erent eviction strategies like Least-
Frequently-Used (LFU), Least-Recently-Used (LRU) or First-In-First-Out (FIFO).
Which one to select depends on the application, since each strategy has advantages
and disadvantages regarding access time of objects. Because of eviction a cache is
not only useful to provide fast access to data, but also to support processing on
large data sets which do not totally �t in main memory.

As said before, a distributed cache provides a single, consistent view of the data.
This means that any updates of data on one cache node will be propagated to the
other nodes. This may be done by replicating updated data or by marking it as
invalid on the other nodes. A read operation on another node will then cause a
refetch of the data.

The di�erent structures and the underlying mechanisms a cache can take up are
known as cache topologies. Coherence provides several cache toplogies, including
replicated cache, partitioned cache, local cache and near cache. All of these can
also be used in conjunction and/or together with some background storages. In
the following there is a more detailed description about replicated and partitioned
caches, since these are used within the developed system in chapter 3.

Replicated Cache A replicated cache holds a copy of each data unit on each
cache cluster node. This means that a replicated cache provides high availability of
data and reliability of the cache. If any node of the cache cluster goes down, there
will be no loss of data since it is available at any other node. This topology is very
e�cient and scalable if an application needs to do a lot of read-intensive operations.
The more cache servers are added to the cluster the more read-transaction capacity
is available. But on the other hand a replicated cache is not the ideal topology for
write-intensive operations. Each write will cause an update on all other nodes and
therefore can result in large network tra�c.

Partitioned Cache In contrast to replicated caches, a partitioned cache does
not copy every data unit to each node. A partitioned cache breaks up the whole
data into partitions and then stores distributes them across the cluster nodes. This
topology facilitates write operations, since they do not have to be propagated within
the whole cluster. The partitioned cache therefore scales very well for write- and
read-intensive applications. In practice, a partitioned cache is partially organized
like a replicated cache, as it replicates every partition as backup to only few nodes
in the cluster, but not all. This backup mechanism not only ensures reliability of
the cache, but also increases availability.

2.4 Use Case: Concept Detection in Videos

This thesis focuses on the acceleration of Pattern Recognition and Machine Learning
methods by using distributed computing techniques. Di�erent issues and problems
of introducing distributed computing into such methods are discussed and a system
is demonstrated, which integrates distributed computing software into the Machine
Learning library RapidMiner. In order to prove the systems practicability, it is
applied to an important use case of Pattern Recognition and Machine Learning and
especially for PaREn: Concept Detection in Videos using the Bag-of-Visual-Words
approach. This use case is explained in the following, including two techniques
which are examined in more detail in this thesis: Interest Point Extraction and
k-Means clustering.
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In multimedia retrieval, one sub-area of research is Concept Detection. The goal
of Concept Detection in Videos is to infer high-level semantic concepts from video
contents. While humans are naturally able to understand and interpret video con-
tent, the same thing is a non-trivial task for a machine, since videos are initially
given within a low level representation7, i.e. as a collection of frames, each consist-
ing of simple pixel values. The mapping of these low-level multimedia features to
high-level semantic concepts is usually achieved by using Pattern Recognition and
Machine Learning techniques. Based on di�erent low-level features such as colors,
textures, shapes, interest points or temporal features, models are constructed and
optimized to allow an automatic detection of the high-level concepts. A compre-
hensive overview of the �eld of Concept Detection can be found in [41].

Figure 2.6: Interest points which are located in the same cluster. Each cluster
de�nes a visual word.[36].

A state of the art approach to Concept Detection and Video Retrieval, which
is based on local interest points and so called Bag-of-Visual-Words features, has
been introduced in [39]. In this technique, which will further on be referred to
as Bag-of-Visual-Words approach, three major steps are involved, namely interest
point detection, interest point description and vector quantization. According to the
Pattern Recognition system presented in 2.1.2 all those steps together perform the
feature extraction task, which will result in a Bag-of-Visual-Words feature vector
for each key frame of a video8. In the following, the three steps are explained in
more detail.

Interest Point Detection Interest points are used as an e�cient means to cap-
ture the essence of a scene by detecting the information-rich pixels in an image, such
as those representing spots, edges, corners and junctions [41]. Various interest point
detectors have been proposed in literature. A detailed comprehension can be found
in [44]. Which one to choose or if its reasonable to use a combination of di�erent
detectors usually depends on the problem domain. Thus, it is often necessary to
perform evaluations of di�erent detectors in di�erent application scenarios, which
may result in huge computational demands.

Interest Point Description The second step is to compute a descriptor vector
for each interest point. State of the art descriptors are Scale Invariant Feature
Transform (SIFT) [30] or Speeded Up Robust Features (SURF) [4] In both descrip-
tor types an interest point is represented as a vector x ∈ Rn. By default, SIFT

7This problem is also known as Semantic Gap[40]
8A key frame is a frame of the video which appropriately represents one scene of the video.
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is used with n = 128, whereas SURF is implemented for example with n = 64 or
n = 128. As the name indicates, the descriptor vectors describe an interest point,
viz. at best in a way that supports distinctiveness of the described interest points
and invariance to transformations like rotating or zooming.

Figure 2.7: Generating visual-word image representations based on vector-quantized
interest point descriptors [47].

Vector quantization The Bag-of-Visual-Words idea arose from the �eld of text
retrieval. A text document may be represented by a collection of index terms
which do not themselves have internal structure [27]. This model is often called
Bag-of-Words. A common approach to get a Bag-of-Words is to count the number
of occurrences of all words in the document. The resulting term histogram or
term vector de�nes the Bag-of-Words representation and can be used for document
retrieval or classi�cation.

Analogous to the Bag-of-Words document representation, key frames of videos
can be represented as a Bag-of-Visual-Words [47]. This representation can be
achieved by performing a vector quantization over all interest point descriptors
in all key frames. The descriptors therefore are clustered in their feature space
into a large number of clusters. This can be done by k-Means or similar meth-
ods like k-Medoids or histogram binning. Each cluster can be seen as a 'visual'
word that represents a speci�c local pattern shared by the interest points in that
cluster. Thus, the clustering process generates a visual word codebook describing
di�erent local patterns in images. Figure 2.6 shows example visual words which
can be found in a codebook. The number of clusters determines the size of the
codebook, which can vary from hundreds to over tens of thousands. By assigning
each descriptor of a frame to its nearest cluster and thereby mapping it to a visual
word, the Bag-of-Visual-Words representation can be obtained. According to Bag-
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of-Words, the visual words for each frame are counted. Figure 2.7 illustrates the
vector quantization step.

Depending on application needs, a training set for obtaining a Bag-of-Visual-
Words codebook is usually very large. It may consists of thousands, millions, or
even billions of video frames. But not only the frames, but also the interest point
vectors extracted from those frames are very large in number: one frame usually
includes hundreds or thousands of relevant interest points. Furthermore, the size
of the codebook in�uences the classi�cation performance. Finding an appropriate
codebook size usually includes evaluations of di�erent sizes.

Because of these issues, following the Bag-of-Visual-Words approach both puts
high demands on computational and memory capacity. This thesis takes a look at
two methdos of the Bag-of-Visual-Words approach and at the opportunities to ac-
celerate them by using distributed computing techniques. First, this is the detection
and description of interest points, which furtheron shall be subsumed by the term
Interest Point Extraction. The second method is k-Means clustering. A detailed
description of this method can be found in Appendix A. The details of Interest
Point Extraction are not crucial for a profound understanding of this thesis. The
distributed system developed in the next chapter is applied to these methods. The
performance of the system is then evaluated in chapter 4.
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Chapter 3

System Development

This chapters deals with development of a distributed system, which integrates dis-
tributed computing software into the Machine Learning library RapidMiner. First
the requirements for this system are analyzed with respect to technical aspects as
well as from a developers and users view. Next, the distributed computing frame-
works Hadoop, GridGain and Oracle Coherence are discussed and compared with
respect to those requirements. After that, the systems design and its integration
into RapidMiner is presented, as well as its realizations with Hadoop and GridGain
in conjunction with Coherence. The applicability of the system illustrated by two
di�erent use cases: Interest Point Extraction and k-Means clustering.

3.1 Requirements Analysis

The overall goal of this thesis is to �nd appropriate ways for accelerating Pattern
Recognition and Machine Learning techniques by using distributed computing. This
especially involves the integration of distributed computing software into Pattern
Recognition and Machine Learning applications. A special focus is put on Map-
Reduce as a possible programming model for distribution. The thesis takes place
in the context of PaREn, which uses RapidMiner to model its underlying processes
and to construct pipelines. Therefore the integration of RapidMiner with several
frameworks for distributed computing is emphasized.

Before developing approaches, requirements have to be de�ned which then are
considered during development. In the context of this thesis, the requirements de-
rive from di�erent views, considering di�erent problems and demands. First, the
general requirements represent the main goals which have to be achieved, abstract-
ing from the special concerns and aspects that arise when looking more deeply into
the problem context. More detailed discussions are done within the technical view,
the developer view and the user view. The technical view deals with general prob-
lems arising from distributed computing and applying the MapReduce paradigm
to Machine Learning. The developers view takes a look on the needs of a Ma-
chine Learning developer, who wants to apply distributed computing techniques to
Machine Learning algorithms within RapidMiner. The last view considers the end
user and how he is confronted with the issues of distributed computing while using
RapidMiner. The views are discussed in more detail in this section. After discussion
of each view there are tables that list the elaborated requirements in a formal way.
Functional requirements are numbered as F whereas non-functional requirements
are numbered as NF. By this, they can be referenced during the design process.

35
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3.1.1 General requirements

The main goal is to �nd ways to apply distributed computing to Machine Learning
techniques. Since RapidMiner is the considered tool for Machine Learning in the
context of this thesis, the goal is to develop an approach or system which introduces
distributed computing capabilities into RapidMiner and thereby accelerates execu-
tion of di�erent processes provided by RapidMiner. The system should consider
the MapReduce paradigm as an approach of distributed programming and should
provide a meaningful interface to make e�cient use of this approach. The computa-
tions shall be accelerated by utilizing many processing nodes, for instance by using
multiple cores on one machine as well as spreading the computation over multiple
machines.

Nr. Requirement

F0 The proposed system should introduce distributed computing
capabilities into RapidMiner.

F1 The MapReduce paradigm should be utilized to provide an ef-
�cient means for distributed programming.

F2 The system should make use of multicore capabilities and utilize
multiple machines within its distributed environment.

3.1.2 Technical View

It has been shown that it is possible to design many Pattern Recognition and Ma-
chine Learning techniques using the MapReduce paradigm [10]. Examples include
popular methods like Naive Bayes, PCA, Neural Networks, SVMs and k-Means clus-
tering (compare 3.4.2). In [10], those have been implemented in MapReduce on Mul-
ticore machines, achieving almost linear speedup. There have also been implemen-
tations of such methods as MapReduce operations within distributed environments
for scaling them on multiple machines and clusters [9, 15, 28, 46]. Nonetheless,
there are several problems arising when applying MapReduce on Pattern Recog-
nition and Machine Learning techniques, especially on multiple machines. These
problems are often due to limitations of the MapReduce programming model, but
also inherent in distributed computing itself. In the following, �rst a discussion
on applying MapReduce to Machine Learning techniques is given. After that the
general requirements of distributed computing are outlined.

3.1.2.1 MapReduce and Machine Learning

Machine learning techniques can be classi�ed by their procedural character, i.e.
their data processing pattern. In [19], three di�erent classes have been identi�ed:
single-pass, iterative and query-based learning techniques. Which class an algorithm
belongs to has implications for its adaptability for MapReduce. Some algorithms
�t well into the MapReduce paradigm, whereas others entail major problems when
trying to adapt. The three classes are outlined in the following.

Within a single-pass Machine Learning algorithm, the data is only passed once
to extract relevant statistics and information for further learning and usage during
inference. One example for this is feature extraction for Naive Bayes Classi�ers:
estimation of the desired probabilities may be essentially done by summing up oc-
currences of feature values over the whole data set [10]. This may also involve
computation-intensive extraction of features in the �rst place [19] (which especially
would be worth parallelizing). Another example is the extraction of interest points
discussed in section 3.4.1. The map tasks are performed per datum or on a subset
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of the whole data set, extracting local contributions of each datum, which are then
combined by the reduce step to compute relevant statistical information - for in-
stance means, variances or histograms - about the data set as a whole. This class of
algorithms usually �t very well in MapReduce. Thus, implementations within the
programming model are mostly straightforward.

In contrast to this, iterative Machine Learning algorithms, which are perhaps
the most commonly applied within Machine Learning research, can also be expressed
within the programming model of MapReduce by doing multiple operations con-
secutively. A common characteristic of these methods is that a set of parameters
is matched to the data set via iterative improvement. One example for such an
iterative algorithm is k-Means (see Appendix A). In each iteration the means are
adjusted and therefore improved. Parameter updates decompose into per-datum
contributions, i.e. updates depend on the whole data set, which is typical for many
algorithms and methods like SVMs or perceptrons. Furthermore, the contribution
from each datum depends in a meaningful way on the output of the previous iter-
ation. In k-Means, the means of clusters can only be updated if all data samples
have been reassigned to their nearest cluster means, which have been computed in
the previous iteration. In consequence, these parameters have to be available to
each map task within the distributed environment. Thus, the result of a map task
not only depends on the input data, but also on further parameters. This especially
becomes a problem if the parameter set for a given Machine Learning instance is
very large. One example for this, which can be found in the area of machine trans-
lation, is the problem of word alignment in bilingual corpora. In word alignment
models, parameters include word-to-word translation probabilities. The parameters
therefore can be in the number of millions. Scaling in the number of training ex-
ample sentences would quickly lead to a point where a simple node cannot handle
all the parameter data at once. At least, the communication overhead for broad-
casting the whole information would dominate computation time. In the case of
word alignment, where a map task rarely needs all of the parameter data, even the
MapReduce topology itself would not be the best choice for e�ciently solving the
problem [46].

Considering iterative algorithms as a common class of Machine Learning al-
gorithms, a MapReduce framework should allow performant access to additional
�static� information in form of parameters or con�gurations in each map task. Fur-
thermore, iterative algorithms often work on the same main input data in each it-
eration and the computation may only di�er on given parameters or con�gurations.
A MapReduce framework therefore should also include fast loading mechanisms for
reused data. The best is to keep such input data in memory and locate the same
job to the corresponding machine.

The third class of algorithms represents query-based learning with distance
metrics. These are Machine Learning applications that directly reference the train-
ing set during inference, such as the nearest-neighbor classi�er. In this setting, a
query instance must be compared to each training datum. This can be done by
splitting up the data set and perform queries concurrently on the map tasks. Again
there is a need to broadcast static information, i.e. the query instances, to all map
tasks. However, multiple queries need not to be processed concurrently, but they
can be broken up into multiple MapReduce operations. Hence, in contrast to the
example of word alignment, static information in query-based algorithms tends to
be of managable size. Considering the problems arising from query-based learning,
it can be seen as a mixture of single-pass and iterative techniques: A single query
passes the dataset only once, but multiple queries may lead to several walks through
the same dataset, which is similar to performing iterative computations on the same
dataset. Figure 3.1 illustrates the processing patterns of the three classes.
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Figure 3.1: Processing patterns of single-pass, iterative and query-based Machine
Learning algorithms. Note that iterative and query-based algorithms usually pass
the dataset multiple times.

Finally, independent of the class of an algorithm, the input data for a Machine
Learning task is sometimes very complex in structure. One sample of a data set
may consist of inputs in di�erent formats, perhaps originating from several sources
or even external applications. Considering Java as the programming language of
RapidMiner, input may arise from di�erent objects, which are logically independent
in the �rst place. But the original MapReduce model expects input to be in form
of key/value pairs. An application developer would have to �t the complex input
data into this model by bundling the relevant parts of each sample into one complex
value object. It is therefore meaningful to provide some mechanisms to easily bundle
input data for map and reduce tasks.

The discussion above revealed some basic requirements, which should be met
by the distributed system to make a MapReduce application on Machine Learning
techniques feasible. These requirements are also subsumed in the following table.

F3 Map Tasks often require access to common static data. The pro-
posed system should provide a performant mechanism to receive
common static data for map tasks.

F4 Since input data often has a very complex structure, the system
should include an easy to use interface for providing complex

input data to map and reduce tasks.

NF0 In iterative algorithms, the data is often used multiple times. There-
fore the system should allow fast access to reused data within
maps and reduces.

3.1.2.2 Distributed Computing

There are several general issues and requirements arising from the �eld of distributed
computing, which have been partially explained in section 2.2. Computational
and Data Grids, as well as realizations of MapReduce should provide appropriate
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solutions for those.
When looking at fault-tolerance, there are generally two types of failures which

can occur when executing a Machine Learning task in a distributed environment:
First, the node may fail because of external in�uences which kill the process or
make it no longer available. One example for this may be a crashed machine or
some network failure. The other type of failures is caused by faults within the
Machine Learning task, either because of errors within the code, or maybe because
of a wrong usage of the distributed computing framework. The �rst type of failures
should be transparently handled by the system in form of failover mechanisms. The
task will then be rescheduled and re-executed on another processing node. This
makes less sense when considering the second type of failure. The fault is inherent
in the Machine Learning task and will occur again if the task is rescheduled to
another node. The developer or user should be informed about the failure to allow
him to �x the fault within the code.

Machine learning tasks are rarely given without data to process. Most tasks will
work on large data sets, which are costly to transfer and sometimes even too big to
�t in memory. Thus, data a�nity plays an important role when distributing those
tasks, especially with MapReduce. In particular, data a�nity is useful for iterative
algorithms, i.e. when the same data is processed multiple times (see NF0). The
proposed system should provide e�ective means for performing computations with
respect to the location of data.

If new tasks are performed within the distributed system, the work load should
be balanced appropriately over the nodes. As explained in section 2.2, there do exist
several strategies to ensure load balancing. In the setting of Machine Learning
and MapReduce, it is important to align those strategies to the requirement of data
a�nity. Load balancing therefore should be done with respect to data locality.

To work on the data in a distributed fashion, it �rst must be transferred and
replicated across the cluster. The distributed system should provide an e�cient
data grid to do replication. There are di�erent means for replicating data, either
by copying all data to all nodes or by partitioning the data between the nodes
while also maintaining one or more backups of each partition. The system should
implement the technique which is most e�cient in the case of Machine Learning
with MapReduce.

F5 Failover mechanisms should be provided in the case of node failure.
Task-speci�c failures should be appropriately reported to the user.

F6 The tasks should be executed with respect to data locality. This
regards load balancing with respect to data a�nity.

NF1 Data replication should be done e�ciently in the context of the
system and its goals.

3.1.3 Developer View

The proposed system shall serve as a starting point for developers to introduce
parallelization into Pattern Recognition and Machine Learning techniques. There-
fore it is important to �gure out the needs of developers, especially considering
RapidMiner as the main Machine Learning environment.

First, the question arises on how much of the underlying distributed computing
technology shall be �visible� to the developer. This refers to the abstraction level
of the proposed system. Since it will build up on the MapReduce paradigm, it is
crucial how this part of the system will present itself to the developer. MapReduce
for itself already abstracts the many issues of distribution and parallelization, but
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each concrete implementation of MapReduce will provide di�erent interfaces to the
paradigm. The proposed system should hide the underlying distribution frameworks
as far as possible, while retaining enough �exibility to use them appropriately. By
this, the developer would not have to deal with the APIs of external distributed
computing libraries and concentrate on the application of MapReduce within Rapid-
Miner. This also reduces the probability of wrong usage and failures.

One important aspect regarding the integration of a distribution framework with
RapidMiner is whether it is able to handle data types and classes of RapidMiner.
Escpecially serialization and deserialization of objects should be performed in a
meaningful way, since this often is a bottleneck in distributed environments. Fur-
thermore, the RapidMiner library must be available on all nodes of the distributed
environment. This regards the class loading mechanisms of the distribution frame-
work. The system should allow the use and transfer of RapidMiner data types and
classes within the underlying MapReduce environment.

The kind of class loading mechanism not only determines the availability of
RapidMiner classes. If a developer creates new functionality in form of new classes,
the nodes within the distributed environment need to reload them in order to per-
form their tasks correctly. Depending on how this reloading mechanism is realized,
the developer will spend more or less time for broadcasting the classes to all nodes.
This refers to the issue of Automatic Deployment (see 2.2.1). Reducing deploy-
ment time is one way to fasten the overall development process, which is especially
important considering RapidMiner as a rapid prototyping framework.

NF2 The system should appropriately abstract the interfaces of un-
derlying MapReduce frameworks.

NF3 The usage of RapidMiner and other external libraries should
be transparently possible within the distributed system.

NF4 There should be an easy way for a developer to deploy changes
during development to all the nodes of the distributed system.

3.1.4 User View

The typical user of the system comes from the Pattern Recognition and Machine
Learning community, for instance from the context of PaREn, using RapidMiner as
a tool to perform his tasks. As a Machine Learning expert and RapidMiner user in
�rst place, he will mostly not be interested in how the Machine Learning algorithms
are implemented in detail, he just wants to use them and be sure they work cor-
rectly as expected. This also includes the distribution aspects of the system. When
de�ning a pipeline of Machine Learning tasks by selecting and connecting di�er-
ent components within RapidMiner, it is not essential - from a Machine Learning
point of view - that some components may support distributed computing. But a
user doubtlessly is interested in accelerating his tasks. In some cases it might be
even infeasible to perform the tasks without distributed computing, especially when
considering time or memory aspects.

The user should be aware of the possibility of distributing his tasks, but also
should be able to use it transparently within his Machine Learning environment.
The integration of distributed computing should be intuitively possible, without
having to deal too much with the underlying concepts. This especially means that
building and con�guring new clusters of processing nodes should be as easy and
fast as possible. Starting new processing nodes and connect them to a cluster
should furthermore not require too much knowledge about distributed computing
and network issues.

A further aspect of usability is monitoring: the user might want to know whether
his cluster is up, how many processing nodes are in it and where these nodes are
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located. This allows better control of the whole system. In the case of failure it
usually is important to know what and on which node the failure has happened.

NF5 The system should hide the underlying distribution concepts

as much as possible to the user.
NF6 Cluster initialization should be as easy and fast as possible.
F7 The system should provide appropriate monitoring of processing

nodes and feedback in the case of failures within the cluster.

3.2 Discussion of Frameworks

Several approaches and frameworks exist for distributed and grid computing. One
approach or framework may �t the needs of a distributed application context very
well, whereas others may entail huge drawbacks or even have negative impact on
overall application performance. Which framework to choose for a particular ap-
plication strongly depends on the goals that a framework trys to ful�ll, i.e. which
problems they usually address and which applications they are optimized for. In the
following, di�erent frameworks are discussed, referring to the needs and problems
of distributed Machine Learning with MapReduce within RapidMiner, which have
been outlined in the previous section. Each requirement is referenced and discussed
for the frameworks. The discussion furthermore provides the basis for integrating
the appropriate components within the design step.

The discussion takes a look at three frameworks for distributed computing: Ha-
doop and GridGain, the latter one in conjunction with Coherence as underlying
data grid. There are several other approaches and frameworks, which may be possi-
ble candidates for an integration with RapidMiner, but considering and discussing
all of them in detail would go beyond the scope of this thesis. However, there
are several reasons why Hadoop, GridGain and Coherence have been chosen for
detailed discussion: The �rst important aspect is that all frameworks are written
in Java, which fosters integration with RapidMiner, as it is also purely written in
Java. Hadoop, as the �rst framework under consideration, is widely used in popular
applications (compare section 2.3.2) and often referenced in scienti�c publications,
so its suitability for distributed computations has been proven by a big commu-
nity. Furthermore, it is a direct implementation of Google's MapReduce paradigm,
which is especially inspected as a programming model for Pattern Recognition and
Machine Learning techniques in this thesis. GridGain on the other hand also pro-
vides ability to perform MapReduce like computations and by this also serves as
a candidate for inspection of MapReduce. In addition to this, it seamlessly inte-
grates with several grid and and enterprise software solutions, especially data grids.
Thus, it is far more easy to build up and evaluate a distributed system on di�erent
technologies. Furthermore, GridGain's concepts and interfaces appeared to be very
intuitive and the framework is very well-documented. Coherence has been chosen
as Data Grid solution, since GridGain provides integration with it out of the box.
A big advantage of Coherence is the ability to have data hold in memory instead of
managing it on �le system. It provides several di�erent cache topologies, which are
highly con�gurable. As with GridGain, the documentation is very clear and gives
many tips and suggestions for development.

3.2.1 MapReduce Support

Both Hadoop and GridGain do support MapReduce-like computations (F1). Ha-
doops MapReduce is very close to the speci�cation made by Google, whereas Grid-
Gain has a more rudimentary MapReduce implementation, which mainly focues on
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providing a divide & conquer solution. A main focus of Hadoop is to make compu-
tations on very large data sets possible. These data sets may be tera-bytes in size
[22]. Hadoops main responsibility basically is splitting large data into smaller data
subsets for processing. It is therefore very close to Google's idea of MapReduce.
GridGain, as a computational grid, on the other hand focuses on splitting logic and
not data in the �rst place. The MapReduce part of GridGain therefore splits a task
into subtasks and distributes the computation, thereby not looking so much on how
data is e�ciently split and distributed. GridGain assumes to have this done by
some underlying data grid. It therefore integrates with several Data Grid solutions
out of the box, the user may choose a Data Grid which �ts his problems best, but
on the other hand has to rely on further technology.

In both frameworks it is possible to utilize multicore capabilities as well as
multiple machines (F2). They both provide options to con�gure the number of
working processes or threads on a machine, which implicitly allows control over the
number of cores which are used on a single machine. By default, they are designed
to operate on multiple machines and aim to scale with the number of machines.

3.2.2 Data Handling

Fast access to the data within maps and reduces is not only crucial for single Map-
Reduce jobs, but especially when performing multiple jobs iteratively on the same
data (NF0). One important aspect therefore is data a�nity (compare 2.2.1), which
is captured by requirement F6. Assuming that data a�nity is given on every single
machine, there is still a need to have the data in a form which allows fast access
in each iteration. Hadoop's MapReduce mechanisms are strongly coupled to the
�le management of its underlying HDFS. This means that input data is typically
given in form of large raw �les which are distributed as blocks within the �le system
cluster. This concept performs well for very large text or similar input, but entails
drawbacks when working with Java objects. The objects have to be serialized when
writing to �les and deserialized when reading from �les. But especially fast reading
is crucial for overall performance when doing multiple MapReduce jobs in sequence
on the same data. Reading from �le system and time-consuming deserializations of
the same input objects in each iteration may be a huge bottleneck for performance.

In a distributed cache solution like Coherence the data is usually hold in mem-
ory and therefore reading from �le is not needed. The need for deserialization of
data only arises when objects are kept in cache in a serialized form. Using a cache
as underlying data grid therefore can have advantages over using a �le system or
some disk approach when doing iterative MapReduce operations. However, when
considering very large input data that do not �t into memory at once, reads from
disk and deserialization usually become necessary. In cases like this Hadoop prob-
ably performs better since it is thought to do performant disk reads in large scale
data extensive applications [45].

In RapidMiner, the intended data sets usually do �t in memory, since it is
designed as standalone desktop application. Therefore a cache solution may result
in better performance in many use cases, especially for iterative data access. When
thinking of Concept Detection as a use case, the emerging data sets become very
large. As outlined in chapter 2.4, a performant Concept Detection system needs
to be trained on a very large data base, consisting of thousands, millions or even
billions of images. Not only the images themselves require much storage space, but
also the extracted interest point vectors which are then clustered to build the visual
codebook. Considering large scale data processing scenarios like Concept Detection
in Videos, Hadoop may be a better choice for distributing data.
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In most cases data a�nity of computations is not only crucial for fast distributed
data processing, but it is necessary to make worth the e�ort of distributing data
and computations (F6). Hadoop is explicitely designed to use data a�nity as it
drives computations depending on locality of data blocks within HDFS. Without
that mechanism, the data blocks, which are by default 64 MB in size, would have to
be transfered to the place of task execution, which would not be feasible. GridGain
is not designed to drive computations depending on data locality in the �rst place.
It just allows �ne-grained control over how jobs are distributed within the grid. In
conjunction with some underlying Data Grid the computations can be scheduled in
a way to respect locality of data. For example, when looking at Coherence as an
example for such a Data Grid, GridGain provides the GridCoherenceLoadBalanc-
ingSpi, which can be used to associate jobs with certain keys stored in the cache.
By this way it is possible to schedule the jobs to a node which contains a replica
of the data corresponding to that key. Figure 3.2 illustrates this load balancing
mechanism.

Figure 3.2: GridCohrenceLoadBalancingSpi: Each job contains the key which is
used to store the corresponding data in the distributed cache. The jobs therefore
can be scheduled with respect to the location of this key.

E�cient handling of static data like parameters or con�gurations within Map-
Reduce is an important requirement especially for Machine Learning applications
(F3). Hadoop provides an interface named DistributedCache which allows specify-
ing di�erent read-only �les or archives on the HDFS for transferring statically to
all slave nodes before map or reduce tasks are executed. This includes drawbacks
if the static data is given in form of Java objects. These have to be read and de-
serialized from �le before map and reduce executions, which consumes additional
time. Furthermore, there neither is an obvious way to store or change static data
for a next iteration within map or reduce tasks, nor it is possible to have a shared
synchronized memory space for tasks.

GridGain provides a functionality named DistributedTaskSession, which allows
specifying of attributes which can be seen and modi�ed by all sub-tasks within some
distributed task. This may be used to transfer static data to all sub-tasks before
execution. Another way would be to utilize the underlying data grid to replicate all
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data to the nodes before execution. In Coherence it is possible to de�ne a replicated
cache which can be used to provide static data on all machines. The data stays in
memory and changes to it can be synchronized with all other machines.

The replication of data is important to ensure data protection in the case of node
failure (NF1). If a machine crashes and therefore loses the data on its side, there
still should be copies of that same data units around somewhere in the cluster. But
it may take up too much disk space to store each data unit on every node. Hadoop
by default stores each data block three times in the HDFS. If one node failes and a
data block is lost, it is replicated again from one of the other blocks to a number of
three copies. The number of replica is con�gurable and therefore can be adjusted to
the needs of speci�c applications. In Coherence there are di�erent cache topologies,
each allowing other ways of distributing the data. A �replicated cache� does hold all
the data on every node, which may be best suited for providing static data needed
by all jobs. Another cache topology is the �partitioned cache� which works similar
to the replication mechanism in Hadoop's HDFS. The whole cache is paritioned into
subsets and every subsets is replicated certain times on other nodes of the cache.
Therefore data loss is also prevented in case of using Coherence as underlying data
grid.

The need for supporting complex input data for maps and reduces has been
identi�ed (F4). Since Hadoop is very close to Google's idea of MapReduce, it de�nes
the input of maps and reduces as key/value pairs. This implies that complex input
data must be bundled into one value object per key. As Gillick et al. �gured out,
much of the existing code of Hadoop assumes that input data is packaged in one
�le that can be distributed across the network independently of other data [19].
Tying together multiple di�erent input �les therefore is not trivially possible. The
most straightforward way therefore is to bundle all data within the same input
�le. GridGain itself does not provide su�cient functionality for splitting data and
distributing it, it rather controls computations. The bundling of complex data
therefore has to be done by the underlying data grid. Coherence as a possible Data
Grid solution has the ability to co-locate data which is relational in nature. It is
therefore possible to tie together multiple input objects on the same machine and
use it as one input source.

Summing it up, both Hadoop and GridGain with Coherence provide e�ective
means to handle data in a way that �ts the needs identi�ed in 3.1. The central point
in which they di�er and which is important in the context of RapidMiner, is the
way in how they provide the data, i.e. provision from �le system vs. provision from
memory. Since RapidMiner �rst of all handles data sets which �t into memory, it is
reasonable to choose a distribution approach which holds data in memory instead
of writing and reading it from �le when accessing. As said before, in cases where
data does not �t into memory any more, a �le system approach probably results
in better performance. In chapter 4, it is also shown that both approaches lead to
signi�cant di�erences in performance.

3.2.3 Failure Handling

In any distributed system, especially when thinking of large scale applications, it
is a rule rather than an exception that single tasks or nodes will fail or go down.
Appropriate failover mechanisms are therefore important to ensure trouble-free dis-
tributed computations (F5).
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In Hadoop, failover is done four times by default for each failed task until �nally
marking the task as failed. When rescheduling the task in the case of failure,
Hadoop tries to avoid executing the task on a processing node where it previously
has failed. A task that �nally fails after four (or some con�gurable number) of
attempts will bring the whole job in a state of failure. In some cases, this may not
be an appropriate behavior: In many data processing applications there sometimes
are corrupted data sets, for instance some text lines which do not �t the expected
format. This means that small parts of the whole data can cause single tasks to
fail, but the overall computation results may nevertheless not be in�uenced very
much by these failures and therefore still be valuable. For such cases Hadoop allows
to con�gure the maximum percentage of tasks that are allowed to fail without
triggering job failure.

GridGain's failover mechanism is handled by GridFailoverSpi. By implementing
this SPI one gets �ne-grained control over how jobs are rescheduled in case of
failure. Default implementations include a failover mechanism very similar to the
one of Hadoop: The GridAlwaysFailoverSpi reschedules a job a maximum number
of times until it is �nally marked as failed. For each attempt another node is chosen
to try execution. Another implementation is the GridNeverFailoverSpi which never
tries to failover a job, but directly marks the whole task as failed. This may be
useful in applications where execution of a job on each node is necessary.

Totally viewed, both frameworks �t the requirements for reliable distributed
computing, as identi�ed in context of this thesis.

3.2.4 Object Serialization

Since both Hadoop and GridGain are purely written in Java, they can be integrated
into RapidMiner within the language, which is a great development advantage. A
certain integration issue is the distributed handling of speci�c RapidMiner object
types within Hadoop and GridGain (NF3). In order to transfer data within the dis-
tributed environment, it is necessary to serialize and deserialize objects. In Rapid-
Miner, the IOObject interface, which is responsible for representing data that can
be passed within RapidMiner processes and persisted on disk, can be serialized in
two ways. The �rst is to use Java Object Serialization1, which is included in the
Java language. The IOObject interface extends the Serializable interface in order
to do so. The second way is XML serialization with XStream2.

Hadoop provides its own interface for this purpose, namely the Writable inter-
face. It gives �ne-grained control over how objects are serialized and deserialized.
Several implementations are available for common object types like Integer, String
or Arrays. For speci�c application types the user has to implement the serialization
procedures by himself, which can result in huge development e�orts. But Hadoop
also provides a plugin mechanism for custom serialization frameworks. This for
example allows the usage of the Java Object Serialization included in the Java
language, but also external frameworks like Apache Thrift3 or Google Protocol
Bu�ers4.

GridGain and Coherence both can also be used with di�erent serialization frame-
works. They both provide support for standard Java Object Serialization, but also
for own implementations or external serialization solutions. GridGain by default
uses JBoss serialization5 to transfer objects between nodes, but also allows to use
XStream or to implement custom serialization via the GridMarshaller interface.

1http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
2http://xstream.codehaus.org/
3http://incubator.apache.org/thrift/
4http://code.google.com/p/protobuf/
5http://labs.jboss.com/serialization

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://xstream.codehaus.org/
http://incubator.apache.org/thrift/
http://code.google.com/p/protobuf/
http://labs.jboss.com/serialization
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Much more important are the serialization mechanisms of the underlying data grid,
since data is usually much bigger in size, so that serialization and transfering ob-
jects often becomes a bottleneck in distributed environments. Coherence therefore
provides its own interface, namely the Portable Object Format6 (POF), which is
similar to the Hadoop Writable interface in that the developer has to implement
serialization by himself. But it is designed to allow indexing �elds of Java Objects
and by this supports the access on single �elds of cached objects without loading
and deserializing the object as a whole.

The right serialization framework not only is a precondition to distribute data,
but also for doing it performantly. It is therefore important that the serialization
used in this frameworks can be changed easily. Both Hadoop as well as GridGain
and Coherence provide e�ective means for doing this.

3.2.5 Deployment

Deployment and redeployment of classes within distributed environments often in-
hibits fast development and testing of applications. Thus, deployment should be
as automized as possible to gain development productivity (NF4). In Hadoop, de-
ployment of new software is done on starting time of jobs. The class �les have to
be packaged into a Java archive (Jar), which can then be transfered to all nodes.
When the TaskTracker starts a new JVM to execute map or reduce tasks on the
remote node, the Jar �le and its classes are available on classpath.

GridGain provides a remote class loading mechanism. When starting a new task,
the classes are automatically deployed on all nodes that participate in executing the
task. By this it is not necessary to put new classes at classpath. When modifying
code, only the node that starts the task has to be restarted to load the new classes
locally, remote nodes stay running and reload classes each time when executing
jobs.

From a developers point of view, it appears to be more productive to have class
loading automated on starting time of the application. But as experienced during
work with GridGain in conjunction with Coherence, there often arise problems
caused by classloading issues: the class loaders used by GridGain and those used
by Coherence are not necessarily the same, which for example may lead to failures
in which classes are not found within Coherence and cannot be deserialized. Thus,
in some cases the use of remote class loading might be problematic. Furthermore,
more complex deployment process like packaging Jar �les as given in Hadoop, might
also be supported by appropriate building tools, so this overhead in development
would be negligable.

3.2.6 Cluster Initialization

From a users point of view, it is important that building a new grid can quickly and
easily be done, even without having speci�c knowledge about distributed computing
or the used frameworks (NF6). In both Hadoop and GridGain it is possible to start
new nodes relatively fast. Nonetheless, for both it is usually necessary to do some
con�guration in order to start nodes, connect them to an existing cluster and to
adjust all the components to the given environment. Most of these con�guration
issues are concerning IP addresses and ports of local and remote nodes, number of
threads or processes on the node, Java heap size, logging mechanims and others.
Sometimes it is also necessary to do some environment speci�c settings, for example
when having to pass a �rewall. Even though some of the con�guration parameters
can be set up and aligned prior to the release of a speci�c application package, there
most often still will be open con�guration issues.

6http://coherence.oracle.com/display/COH35UG/The+Portable+Object+Format

http://coherence.oracle.com/display/COH35UG/The+Portable+Object+Format
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As experienced during working with both frameworks, it turned out that Grid-
Gain tends to be more comfortable to set up and start than Hadoop, especially
when having little knowledge about the frameworks. For example, Hadoop requires
to have a master computing node, including a running NameNode and a JobTracker
process. This means that every node has to be con�gured with IP addresses and
ports which these processes are listening to. This requires speci�c knowledge about
the machines of the cluster, and it implies the user having knowledge about the
concepts of Hadoop, i.e. the topology of a Hadoop cluster. GridGain has di�erent
discovery and communication mechanism, but by default new nodes are discovered
by IP multicasting, which means that nodes can �nd each other and connect au-
tomatically7. Other examples of more complex con�gurations for Hadoop include
SSH settings and the creation of a dedicated Hadoop user on Linux systems8. How-
ever, in most cases both Hadoop and GridGain require at least minimal knowledge
about the frameworks or network issues to start and adjust to the environment.

3.2.7 Monitoring

A user may want to have a concrete overview over his cluster. Appropriate monitor-
ing mechanisms are therefore important (NF7). In Hadoop, all components such
as JobTracker, TaskTracker, NameNode and DataNode do expose themselves via a
web front end. By this, monitoring is possible within common web browsers. The
di�erent nodes provide information about �le system structure, actual running jobs,
map and reduce status, output of tasks and reports of failures. In GridGain, mon-
itoring is supported via JMX MBeans. Most parts of GridGain expose themselves
via MBeans and can be monitored using JConsole9. It is therefore possible to view
con�gurations for each node, have a look at actual work loads and get an overview
over the cluster. All this information is also directly accessible within applications
via the API. The monitoring facilities of both frameworks are appropriate solutions
for this thesis.

In summary, it can be said that comparing Hadoop and GridGain with Coherence
is not really possible in general, as both frameworks are quite di�erent in many
aspects and pursuing di�erent goals. Hadoop concentrates on making large scale
data processing possible, providing a distributed �le system which is designed to
store tera- or petabytes of data. GridGain focuses on beeing a Computational Grid
software which aims to allow �ne-grained control over scheduling and execution
of jobs, independent of how data is provided in this context. Coherence, as a
distributed caching solution, �rst of all aims to provide fast access to data, for
example as an interlayer between a database and an application. To provide a
compact overview of the presented discussion, the main points which have been
considered for comparison are listed in Table 3.1.

3.3 System Design

In this section, the architecture of a concrete system for distributed computing with
MapReduce and its integration with RapidMiner is presented. The design decisions
made are mainly based on the requirements identi�ed in section 3.1. If a certain
design approach addresses a speci�c requirement, then it is annotated with the

7This is an ideal case. Firewalls and network must support this.
8These con�grations are not absolutely required, but often recommended, for example in [45].
9http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html
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Features Hadoop GridGain & Coher-

ence

MapReduce Sup-
port

Yes (++) Yes (+)

MultiCore Yes (++) Yes (++)

Multiple Machines Yes (++) Yes (++)

Data Provision File System (-) In-Memory (++)

Data A�nity HDFS (++) GridCoherenceLoad-
BalancingSpi (++)

Static Data Provi-
sion

File System (-)
(DistributedCache)

In-Memory (++)
(Replicated Cache)

Replication HDFS (++) Partitioned and
Replicated Cache
(++)

Complex Input
Objects

Have to be bundled
within one �le (-)

Co-location of objects
within the Cache (+)

Fault-Tolerance Failover
Mechanism (++)

GridFailoverSpi (++)

Serialization Writable
Interface (++)

Portable Object
Format (++)

Deployment Jar-Files (+) P2P-Classloading (+)

Cluster Initializa-
tion

Start Scripts (+) Start Scripts (++)

Monitoring Web Interface (++) MBeans (++)

Table 3.1: Comparison of Hadoop and GridGain with Coherence in the context of
RapidMiner.
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corresponding reference number. After the abstract description of the system there
follows a more detailed explanation on how the system is realized, �rst with Hadoop,
second with GridGain and Coherence. To avoid confusion, note that Hadoop and
GridGain have di�erent denotations for whole computations and single map and
reduce computations (compare 2.3). In context of the developed system, whole
computations are denoted as jobs, whereas map and reduce computations shall be
referred to as tasks.

3.3.1 Architectural Components

The developed system consists of three major components, namely Distribution,
MapReduceSpeci�cation and DataLayer. The Distribution interface exposes one
major method, the startComputation() method. It is the main interaction point for
RapidMiner (or any software) to perform the distributed computation and to get
output from it (F0). Furthermore, the Distribution interface is meant to encapsulate
speci�c characteristics of the underlying distributed computing infrastructure, i.e.
the frameworks in use. This includes for example con�guration issues, processing
instance management and job preparation.

The computation itself can be speci�ed by someMapReduceSpeci�cation. It
de�nes the logic of a computation in form of a map and a reduce function (F1). The
map and reduce functions are semantically similar to the map and reduce functions
in Google's MapReduce speci�cation in that they perform parallel computations
and aggregate the partial results. But they di�er to them in that there is only one
reduce task, which gets all the results from the map tasks in order to aggregate
them in a de�ned way. The reason for designing the semantics of the system's map
and reduce functions in this way is to decrease complexity of the system10. Even
though such modelling may lead to performance degradation in cases where parallel
reduces are possible, it turns out that allowing multiple reduce tasks in parallel
adds more complexity to the system and therefore puts greater demands on the
underlying distribution software. Furthermore, the requirements analysis has not
explicitely revealed a special need for multiple parallel reduce tasks.

Data access to map and reduce tasks is given by the DataLayer interface. It
exposes methods to provide and access two types of data: individual mapping

data and common static data. Individual mapping data refers to parts of the
whole main input data, which can be worked on in parallel by individual map tasks.
Static data refers to data which is common to all map and reduce tasks. It must
not be split and is accessable by all tasks (F3). The distinction of those two types of
data is meaningful for example when considering how data can be distributed across
processing nodes: Individual mapping data must be stored at least once, ideally at
the location of map computation to improve access-time consumption (NF0, F6),
static data on the other hand should be accessible by all map tasks, which implies to
have it replicated several times across the cluster, at best once for every processing
node. Figure 3.3 illustrates the relationship between the components of the system.

This thesis explored the opportunities of the MapReduce model, especially in
the context of Pattern Recognition and Machine Learning (compare 3.1.2.1). It
has been shown that MapReduce can be applied to many of these algorithms and
techniques (and also to other applications) in a straighforward manner, and by
this transparently gain computation perfomance for these techiques within a dis-
tributed environment. The components of the developed system, especially the
MapReduceSpeci�cation interface, provide this MapReduce functionality to Rapid-

10It can be easily shown that every regular MapReduce computation which may use multiple
reduce tasks also can be modeled as a MapReduce computation with only one reduce task: change
the output (key, value) of the map function to (default_key, (key, value)). The whole map output
will be delivered to only one reduce task which still can aggregate with respect to key.
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Figure 3.3: Relationship between the components of the developed system.

Miner, PaREn and other Machine Learning developers in a meaningful and easy to
use way.

3.3.2 Functionality

Before the user starts computation, he speci�es input data by means of the Data-
Layer. First, the whole data must be split into individual parts which serve as input
to the parallel map tasks. How to split the whole data into such parts is left to the
user. By not dictating how to split data to provide map inputs, the system stays
�exible and gives a more �ne-grained control over how input is worked with in the
map tasks11.

The map and reduce tasks can access the DataLayer during computation and
fetch corresponding data. The input data for a single map task can consist of several
data units, which may be logically independent in the �rst place, but group together
to a complex input data entity (F4). Each individual map task has assigned a map
reference number. Data units, which group together as input for an individual map
task, are all referenced by the same map reference number and therefore can be
handled together by the system. Each map task receives exactly the input data
units which correspond to its reference number. The results of the map tasks
are forwarded to the reduce task and aggregated to a single result, which is then
returned to the user who invoked startComputation().

Since there is only one reduce task, there is no need to control data �ow according
to the keys produced by the map step. Data therefore are not given as key/value
pairs in the sense of Google's MapReduce. But each map task has access to the
collection of data units corresponding to its map reference number. The data units
are represented in the system as a key/value pair, the data layer can therefore
be seen as a key/value-store. This is conceptually not the same as the key/value

11The use cases in 3.4 provide examples on how to split data: a list of images can be split into
single images, or a set of vectors can be split into subsets of vectors or even single vectors.
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pairs passed between maps and reduces within Google's MapReduce paradigm. It
just allows to provide logically independent data units for a single map task in a
consistent manner within the DataLayer and by this allows passing complex input
collections to the computations.

3.3.3 Integration with RapidMiner

The developed system may be embedded into the context of RapidMiner without
any changes for the user. The only thing the user might be aware of is that there
are other processing nodes involved, but he will use the system transparently with-
out realizing how distribution is realized, just recognizing that certain methods or
components of RapidMiner run faster.

From a developers point of view, the system totally abstracts from the frame-
works which are used to perform the distributed computation (NF2). In principle,
it is possible to implement the system by using di�ernet frameworks, from a data
distribution view as well as when considering the computational aspects of the Map-
Reduce part. The system has been realized in two ways, �rst with Hadoop, second
with GridGain and Coherence. Both realizations allow to utilize multicore capa-
bilities and to scale out on multiple machines (F2). This will be explained in the
following subsections.

Within RapidMiner, the two types of realizations can be chosen by means of
a Factory pattern [17]. The class DistributionFactory takes care of the proper
instantiation of imlementations of the Distribution component, either with Hadoop
or with GridGain and Coherence. By this design, decoupling of RapidMiner, the de-
veloped system, and the underlying distribution frameworks is fostered and further
implementations can easily be integrated.

The DistributionFactory can be used within RapidMiner Operators to instanti-
ate and utilize the capabilities of the developed system. In this context, an abstract
class named AbstractDistributionOperator has been developed, which can be
used as a foundation or just as example for implementing concrete distribution-
enabled Operators. It allows any type of input and output data, especially the
types which implement the RapidMiner IOObject interface. Therefore the input and
output objects within RapidMiner can be directly used within the developed sys-
tem. Furthermore, the AbstractDistributionOperator provides an abstract method
named split(). By implementing this method the developer can specify how data is
divided into parts, which then serve as input for the individual map jobs. At last,
the developer must provide a MapReduceSpeci�cation for his implementation of the
AbstractDistributionOperator. This will then be used to perform the computation
within the MapReduce framework of the developed system.

Implementations of the AbstractDistributionOperator seemlessly integrate with
the RapidMiner GUI, as they also extend Operator. Within the RapidMiner GUI,
it is possible to make con�gurations on actual processes on which the user is work-
ing on. Especially the Operators within a process can be selected and, depending
of the kind of Operator and its provided functionality, the user can change the
con�gurations and parameters of this Operator. In this context, implementations
of the AbstractDistributionOperator provide one con�guration option out-of-the-
box: The user can directly select whether he wants to use Hadoop or GridGain
with Coherence as underlying distributed computing framework. Summarizing, the
AbstractDistributionOperator embodies an easily reusable component for quickly
enabling computations to be executed in a parallelized and distributed manner,
which also can be seemlessly embedded into existing RapidMiner processes. Figure
3.4 illustrates how the AbstractDistributionOperator �ts into the context of Rapid-
Miner. An example implementation is the use case of Interest Point Extraction,
presented in 3.4.1.
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Figure 3.4: Integration of the developed system within RapidMiner by means of
the AbstractDistributionOperator. The DistributionFactory instantiates concrete
implementations of the Distribution interface, either with Hadoop or with GridGain
and Coherence. This functionality can be transparently used as Operator within
RapidMiner processes.

3.3.4 Realization with Hadoop

The realization of the system within Hadoop has been done by mapping the Data-
Layer component to the HDFS, while modelling the MapReduceSpeci�cation part
as a Hadoop MapReduce job. Figure 3.5 shows the architecture of the system when
using Hadoop as distribution framework. The input data units for individual map
tasks, which are given as Java Objects, are collected by the DataLayer and stored in
serialized form within a �le on HDFS before starting a job. Appropriate replication
and coordination of data with respect to the MapReduce framework is handled by
the HDFS (NF1). Therefore, the �le which holds the input data, is automatically
split and passed to the map tasks by Hadoop. Individual mapping data are read
from and deserialized from HDFS �le before task execution.

Static data that can be accessed by all map tasks and the reduce task are pro-
vided via the DistributedCache interface (compare 3.2). Since �les on HDFS cannot
be modi�ed, but only totally overwritten, it is not trivially possible to change indi-
vidual mapping data or static data within map and reduce tasks. Thus, the Hadoop
realization of the developed system does not provide this functionality. Nonethe-
less, it turned out that also without this functionality, the system is su�cient for
applying to the use cases presented in section 3.4, especially for doing evaluation
with Hadoop.

By now, the DataLayer does only accept objects which implement the Java Se-
rializable interface, which is su�cient for passing IOObjects of RapidMiner within
Hadoop, even though it probably lacks in performance compared to other serializa-
tion mechanisms. By customizing Hadoop to utilize other serialization mechansims,
it would also be possible to use those within the developed system.

The MapReduceSpeci�cation is appropriately embedded into the MapReduce
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Figure 3.5: Realization of the developed system with Hadoop.

framework of Hadoop. The map tasks within Hadoop pass the corresponding input
data to the map task given by the MapReduceSpeci�cation, whereas one reduce
task in Hadoop executes the reduce task given in the MapReduceSpeci�cation. By
this the systems MapReduceSpeci�cation utilizes the parallelization capabilities of
Hadoop's MapReduce framework. Also failover of single tasks is done automatically
by Hadoop (F5) and therefore must not be handled explicitely by the system.

Using RapidMiner libraries or other external libraries is only possible if they are
packaged into the Jar �le which is deployed during starting the job, or by setting
the classpath of every processing node in the cluster to include those libraries (NF3,
NF4). Both methods have certain drawbacks: the Jar �le may become very large in
size if there are many dependencies in the code. Furthermore, these dependencies
also have to be identi�ed, i.e. missing dependencies would result in exceptions
indicating that classes are not found. Adding the missing classes to the classpaths
of all processing nodes implies that classes must be available on all machines of the
cluster, which means increased deployment e�orts.

As said in the discussion about frameworks in the previous section, building a
Hadoop cluster may demand con�guration e�orts from the user and therefore forces
the user to learn speci�c Hadoop concepts and maybe other concepts like network
issues (NF6, NF7). Nonetheless, there already may exist a Hadoop cluster within
the users environment, which is used for other purposes. This could then easily be
utilized for the developed system and RapidMiner.

Another aspect of the developed system is monitoring (F7). Since Hadoop does
already provide web interfaces for this purpose, there is no need to include detailed
monitoring within the system or RapidMiner. The user may be referred to the
monitoring capabilities of Hadoop directly.
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Hadoop has been proven within many real world applications to be a very power-
ful framework for distributed computing and large scale data processing (compare
2.3.2). The distributed system is able to utilize these capabilities and by this inte-
grate them into the the context of RapidMiner. This can lead to perfomance gains
and

3.3.5 Realization with GridGain and Coherence

The developed system can also be realized by utilizing Coherence as DataLayer
and GridGain to control the computations of the MapReduceSpeci�cation. The
architecture of the developed system can be seen in �gure 3.6. The two types of
input data can be stored in two ways in Coherence. Individual mapping data can be
stored within a partitioned cache. Data units which form the input for a single map
task can be colocated by using the KeyAssociation interface of Coherence. Objects
with the same associated key are stored in the same partition, i.e. on the same
machine. By this and using a partitioned cache, the input for a single map task is
only stored once (not considering backup) in the cluster, i.e. on the machine where
the map computation takes place (F6). Fast access is guaranteed since data is kept
in memory by the cache (NF0). Static data can be stored within a second cache,
which is con�gured as a replicated cache. Data is then replicated to all nodes and
therefore accessible by all tasks (NF1).

Figure 3.6: Realization of the developed system with GridGain and Oracle Coher-
ence.

As in the Hadoop realization, the system only supports input objects which im-
plement the Java Serializable interface, which is su�cient for the IOObject interface
within RapidMiner. But this can also be changed by utilizing other serialization
mechansims within Coherence and GridGain and probably would lead to perfor-
mance gains.
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The MapReduceSpeci�cation can be executed by using the MapReduce capa-
bilites of GridGain. It is designed to have many parallel map tasks and exactly one
reduce tasks. It therefore �ts the needs of the MapReduce model of the developed
system. The maps must be aligned with the locality of data within the Coherence
cache. GridGain provides the GridCoherenceLoadBalancingSpi, which allows to
align single jobs with the data given in a cache. Data in the cache is given as key/-
value pairs. The jobs can be associated with some key and GridGain automatically
controls locality of computation by means of the GridCoherenceLoadBalancingSpi.

In case of failure, the computation is rescheduled by the GridFailoverSpi to a
node which holds a backup of the corresponding data (F5). By default, this failover
mechanism re-executes a single computation job three times before skipping the
whole computation. It also would be possible to de�ne certain exception types in
which the job is not re-scheduled, but directly leads to global failure of the whole
computation.

Deployment of RapidMiner classes or other external libraries is handled auto-
matically by GridGain's peer-classloading mechanism (NF3, NF4). As discussed in
3.2, the developer or user does not have to copy any class �les or libraries (Jar �les)
to the processing nodes. This can be an advantage for development time.

Building a grid can be fairly easy with GridGain and Coherence. GridGain
ships with integration of Coherence out of the box, so that each processing node is
a conjunction of GridGain and Coherence. In the best case it is possible to just start
a script on a di�erent machine and by this start another processing node for the
cluster without doing any con�guration and even without knowing any concepts of
GridGain or Coherence (NF6). The distribution concepts could be totally hidden
to the user in this way (NF5). Nonetheless, this is only possible if network and
environment (e.g. �rewall settings) support this.

Monitoring of the cluster can also be done by external interfaces. As explained in
3.2, it is possible to monitor GridGain with JConsole and JMX (F7). Furthermore,
GridGain provides an API for accessing certain aspects which are interesting for
monitoring. By this, monitoring could be easily integrated into the RapidMiner
GUI and provided to the user within his working environment without dealing with
external software like JConsole.

3.4 Use Case Application

In this section, the applicability of the developed system presented in 3.3 is demon-
strated on two use cases: Interest Point Extraction and k-Means clustering. It
will be shown that these methods can be adapted to the system's programming
model, and by this can utilize its parallelization and multi-machine capabilites for
accelerating computations. Both methods are important parts within Concept De-
tection in Videos with the Bag-of-Visual-Words approach, and both - but especially
k-Means clustering - can be found as components in many other Machine Learning
and Pattern Recognition applications. Thus, it is valuable to gain performance of
these methods by utilizing distributed computing technologies. But they also serve
as appropriate examples for Machine Learning algorithms in general.

3.4.1 Interest Point Extraction

In section 2.4 Concept Detection in Videos has been introduced. In this context
the Bag-of-Visual-Words approach has been explained which includes two major
steps: Interest Point Detection and Interest Point Description. In the �rst step, the
interest points are located by a speci�c interest point detector. The coordinates of
the interest points are then used to compute a description vector of the area around
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those points. Since these steps are naturally performed in sequence on a single
video frame, they are handled as a single wrapped-up process in this thesis. This
process is referred to as Interest Point Extraction. The details of Interest Point
Extraction are not central to this thesis. Instead it will focus on how this process
can be executed and accelerated within a distributed environment.

Training sets for Concept Detection consist of a large number of video frames
(compare 2.4). Doing Interest Point Extraction sequentially on the whole data set
therefore takes a long time. But Interest Point Extraction can be done indepen-
dently for each individual video frame. This is where parallelization, and especially
MapReduce can be applied: by modelling the extraction process for a single frame as
a map task, it can be done separately for each frame on di�erent processing nodes.
The reduce step simply collects the extracted descriptor vectors. The process of
Interest Point Extraction can also be seen as a single-pass learning algorithm as
explained in 3.1.2.1 The whole data set is passed once to extract all the relevant in-
formation, i.e. the interest point vectors. Therefore, the corresponding MapReduce
speci�cation is very straightforward and would be as follows12:

map(frame_id, frame) −→ [(frame_id, ~desc1), ..., (frame_id, ~descn)]

The map step takes a single frame as input. The key is some unique identi�er for
this frame, for example the �le name. The resulting intermediate key/value pairs
are again the frame identi�er, together with descriptor vectors as values. These
pairs are then grouped by frame identi�er and passed to the reduce function, which
is de�ned as the identity-function13:

reduce(frame_id, [ ~desc1, ... , ~descn]) −→ (frame_id, [ ~desc1, ... , ~descn])

This MapReduce speci�cation has been implemented upon the developed system
shown in 3.3, and has been encapsulated into an Operator in RapidMiner. More
precisely, the class InterestPointExtraction has been designed. Since there do
exist many di�erent methods of interest point detection and description (for instance
SIFT and SURF), the operator has been designed as abstract. By this, new Interest
Point Extraction operators can be implemented very fast. For this thesis, a concrete
implementation for SURF detection and description has been created, which uses
external libraries.

The InterestPointExtraction class inherits from AbstractDistributionOperator.
By this, it is enabled to do its computations in a distributed manner. In the context
of Interest Point Extraction, the input data is meant to be a collection of images,
which shall be processed in parallel within the distributed system. RapidMiner
does not support handling of images out of the box. It would be feasible to utilize
the speci�c RapidMiner type ExampleSet in order to handle a plain list of images.
However, a solution like this would lack proper representation of images and would
not support distinguishing images from the nominal or numerical data types usually
used in RapidMiner. It furthermore would not support any extensions for image
handling or processing within RapidMiner.

Because of this, the new class ImageObjectList has been designed. It imple-
ments the IOObject interface and therefore can serve as input for the interest point
extraction operator. It abstracts a list of images by referencing each image by its
�le name. In the context of this thesis, the images themselves are stored on NFS14.

12The same approach can be found in [9]. In this scenario 6 million images have been processed
within three days.

13This assumes multiple parallel reduce tasks, but can easily be adapted to the developed system,
which only entails one reduce task.

14Network File System: http://tools.ietf.org/html/rfc3530

http://tools.ietf.org/html/rfc3530
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Figure 3.7: Distributed Interest Point Extraction within RapidMiner: the Interest-
PointExtraction class shares the functionality of a RapidMiner Operator, while
utilizing the capabilites of a distributed system.

By this, they are accessible on all processing nodes, but are not distributed via the
Data Grid of the developed system.

The extracted interest point vectors are collected within the speci�c RapidMiner
type ExampleSet. They therefore can be easily reused for further processing within
RapidMiner, e.g. for some kind of dimensionality reduction or for codebook genera-
tion with k-Means clustering. In section 3.4.3 it is illustrated, how such a data �ow
may look like. The relationship of the di�erent components used in this scenario is
illustrated in Figure 3.7.

3.4.2 k-Means Clustering

The second example use case in this thesis is k-Means clustering, which is described
in Appendix A. As explained in 3.1.2.1, k-Means clustering is an iterative learning
algorithm. It therefore is more complex than the previous example of Interest Point
Extraction.

There are two approaches to parallelize the k-Means algorithm: The �rst ap-
proach is based on the recommendation that k-Means should be done several times
with di�erent random starting means. A possible parallelization could be achieved
by copying the whole data set to all processing nodes and start the k-Means al-
gorithm on each node with di�erent random starting means. At the end of the
parallelized computation, the algorithm would just pick the best result of all k-
Means runs. This approach does not divide the data into subsets, but replicates
all data to all nodes. Thus, it is not a data-driven approach and also does not
really hit the intention of MapReduce, which explicitly aims to split computation
logic according to how data is split. Nonetheless it is possible to implement this
approach on the developed system presented in 3.3. In cases where the dataset is
not exceedingly large, it may be feasible to copy it to all nodes and perform the
compute-intensive k-Means method on it in this way. The k-Means algorithm can
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then also be seen as single-pass learning algorithm, but with a dataset, which is
just multiple times larger in size. Therefore this approach is not discussed in more
detail.

Figure 3.8: MapReduce applied to k-Means. The means are updated and serve as
static input for the next iteration.

The second approach already has been demonstrated in di�erent publications,
e.g. in [10, 15]. It parallelizes the k-Means method when optimizing the means. The
whole dataset is split into parts, which then serve as input for the map tasks. In
many publications, the splitting is done on a per sample basis, but it also is possible
to divide the dataset into subsets and let those serve as input for a single map
task. This is more feasible in settings where the MapReduce framework produces
much overhead time for instantiating single map tasks and loading the input data.
When considering a single vector as input to a map, computation time for this
map would be very short, but instantiating the task would take too much time and
therefore diminish overall performance or even completely eliminate the advantages
of parallelization. In this discussion the data therefore is divided into subsets, which
also fosters integration and usage of RapidMiners ExampleSet type.

In each optimization iteration, the k-Means algorithm walks through the whole
dataset, assigns each sample in the dataset to its nearest cluster mean, and computes
the new means by averaging over the members of each cluster. This process can
be parallelized on subsets of the dataset: For each subset, its samples are assigned
to the nearest cluster means, and the new means are partially computed for this
subset. This can be done independently for all subsets in a map step. Then, the
partial contributions from all subsets are aggregated to compute the new means in
the reduce step. The whole process is repeated until the means convergate or until
�xed maximal number of iterations is reached. The whole process is illustrated in
Figure 3.8.

In section 3.1.2.1, the class of iterative learning techniques have been described.
Applying the MapReduce concept to them mainly entails two major challenges:
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static data must be provided to all map tasks and the maps must have fast access
to data in each iteration. In k-Means, the actual means must be provided to all
map tasks in each optimization iteration. This can be done by using the DataLayer
of the developed system, which provides an interface for broadcasting static data to
all maps. Furthermore, the subsets which serve as input for the map tasks have to
be quickly accessible in each optimization iteration. The DataLayer also provides
an interface in order to do this, i.e. specifying individual and quickly accessible
map input data. When using Hadoop as underlying solution, fast access is achieved
by having the subsets on the place of computation for further iterations. When
using GridGain in conjunction with Coherence, this also holds true. Furthermore,
Coherence provides the map input data within memory, which allows a fast access
in each iteration.

As in the case of Interest Point Extraction, this distributed k-Means clustering
has been realized as an Operator in RapidMiner. RapidMiner itself already includes
an Operator which performs k-Means clustering, but its implementation does not
support computing on multicore or multiple machines. It therefore has been modi-
�ed and adapted to make use of the developed system. The modi�ed Operator can
be used in the same way within RapidMiner as the standard implementation, but it
furthermore automatically and transparently uses the capabilities of a distributed
environment to speed up its computations.

3.4.3 Bag-of-Visual-Words

The two methods presented above can be easily connected as operators within a
RapidMiner process. By this, thinking of Concept Detection in Videos, the Bag-
Of-Visual-Words approach can be constructed within RapidMiner. For a Rapid-
Miner user, it makes no di�erence - in terms of usability - wether he de�nes this
Bag-of-Visual-Words process with distributed computing enabled operators or not.
However, the whole process will pro�t from the speed-up provided due to the ability
of scaling to multiple machines. Figure 3.9 demonstrates a possible Bag-Of-Visual-
Words process in RapidMiner.
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Figure 3.9: Bag-of-Visual-Words process in RapidMiner: the D-SURF operator
receives ImageObjectList as input and extracts SURF interest points from the im-
ages. These are given as ExampleSet to the k-Means clustering, which generates the
codebook. With it, visual word histograms for training and testing data can be con-
structed, which can be used for further classi�cation processes. The D-SURF and
D-KMeans, as distributed computing enabled operators, seemlessly embed into the
process and are transparently executed within the distributed environment. By this
the process is more performant as when using standard operators of RapidMiner.



Chapter 4

Performance Evaluation

The focus of this thesis is the application of distributed computing on Pattern
Recognition and Machine Learning techniques. The main goal is to accelerate these
processes by utilizing multiple machines and perform computations in parallel. In
this chapter, the developed system is evaluated with respect to this goal. In order
to do such an evaluation, appropriate experiments have to be done. Those require a
well-considered choice of experimental parameters and an appropriate environment
in which the experiments can take place. The experiments conducted in this chap-
ter are all based on the two use cases presented in this thesis, i.e. Interest Point
Extraction and k-Means. By this, the evaluation obtains a practical foundation and
the system can be proven on real world problems. A further aspect of evaluation
is the comparison of the two realizations of the developed system, �rst with Ha-
doop, second with GridGain and Oracle Coherence. In the following, the di�erent
experiments and their results are described in more detail.

4.1 Experimental Environment

All experiments are performed on �ve machines, each with same hardware, all
running Linux as operation system. The machines are connected via a 1GBit full
duplex intra-network. Each machine is equipped with Intel Atom CPU 330 1.60GHz
Dual Core, with 512KB Cache and 3 GB RAM. The machines support Hyper-
Threading1, which means that each machine has four logical cores, summing up to
a number of 20 logical cores. Note that Hyper-Threading on one physical core is
usually not as performant as having two independent physical cores, since processes
sharing the resources of this core will a�ect each other [8].

As the machines in this setting are all equally equipped, they build up a very
homogenous environment. This is necessary for having meaningful results when
scaling out on multiple machines. Among other things, the experiments aim to
explore the dependency between computation time and number of machines. When
increasing the number of cores or machines, it is expected that computation time
should decrease proportionally. Invastigating this in a heterogenous environment
is hardly possible, since di�erent speeds of machines would lead to a distortion of
measurements. The same holds true if a machine is occupied by other processes.
Therefore it has been ensured that the machines are not under further usage during
the experiments. Furthermore, Hyper-Threading must be considered when treating
the environment as a collection of logical multi cores, since having two logical cores
does not necessarily mean having the performance of two physical cores.

1http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
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Another important aspect is that the given environment is set up with com-
modity hardware, which for example might be found in o�ces. The presented ex-
periments therefore prove the applicability of the developed system within a usual
practical environment.

4.2 Tasks

The �rst experimental task is the extraction of interest points from a �xed collection
of images. The number of images is 1500, each with a resolution of 320x240 pixels.
The images themselves are provided via NFS on all machines, access time to them
is therefore negligible. Basically, the inputs to the map jobs are references of the
images into NFS, therefore the underlying Data Grid of the developed system (i.e.
HDFS or Coherence) is not heavily used in this setting.

The interest point detector and descriptor used for extraction are both SURF.
The number of extracted interest points is 188176, each point given as �eld of 128
double values, making the whole result dataset 184 MB large. This means that
about 125 interest points are extracted from each image in average. The average
time for interest point extraction of one image in this collection has been measured
as 673 ms2. The overall time for extraction of interest points of the whole collection
in sequence on a single machine has been measured as 15.8 min in average. All
experiments have been repeated at least �ve times, outliers have been manually
removed, and the results have been averaged.

The second task under consideration is k-Means clustering. In this setting,
the output of the Interest Point Extraction serves as input to the clustering, i.e.
188176 samples, each with 128 dimensions. In contrast to Interest Point Extraction,
the input data is given directly and not referenced on NFS. This means the data
must be appropriately distributed to all nodes before execution. This can be seen
as initialization, which consumes additional time in contrast to the standard non-
distributed implementation in RapidMiner. However, this must only be done once,
before starting to iteratively optimize the means. For each experiment, at least ten
optimization iterations have been measured, outliers have been removed and the
results have been averaged.

4.3 Parameters

By changing di�erent parameters of the experimental setting, several aspects can
be investigated which have in�uence on computation performance. These aspects
concern distributed computing in general, but also characteristics of the used frame-
works or speci�cs of the tasks under consideration. A main aspect is the overhead
time produced by introducing distributed computing capabilities into the compu-
tations. Inherent in any parallelization framework like MapReduce is some com-
putation overhead for managing the framework and distributing the jobs and the
data. This overhead time usually decreases relative performance, even though one
might exepect that increasing the number of processing instances would lead to a
proportionately speedup. In the following, di�erent parameters and their expected
impact on computation performance is explained.

Distributed Computing Framework One essential topic of this thesis is the
comparison of di�erent distributed computing frameworks with respect to the goal
of developing and integrating distributed computing capabilities into RapidMiner.

2This includes time for copying the image to a temporary folder and converting it into a
grayscale image.
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In chapter 3, di�erent aspects of Hadoop, as well as GridGain in conjunction with
Oracle Coherence have been reviewed and discussed. Nonetheless, the probably
most important aspect which has to be considered as a decision criterion for one of
the two solutions is performance. Therefore the two realizations of the developed
system presented in chapter 3 are evaluated with respect to this aspect.

Single Machine: Number of Cores One requirement identi�ed in section 3.1
is to make performant utilization of multicore capabilities possible. The frameworks
Hadoop and GridGain with Coherence both support this feature. By just running a
single instance on one machine, it could be investigated how well these frameworks
scale with respect to performance using only the multicore capabilities of a single
machine. A good performance in this setting would be useful for a RapidMiner
user in cases where only one machine is available for computation. Therefore ex-
periments may be set up which run the computations on a single machine, whilst
varying the number of parallel threads or processes used within the MapReduce
framework on this machine. A special case in this setting is to have exactly one
thread for execution. Compared to the case of using no distributed computing at
all, it demonstrates best how much overhead the frameworks produce, since the
whole computation is done sequentially as when using no distributed computing.

Multiple Machines: Number of Machines A main requirement is the uti-
lization of multiple machines to gain performance in a distributed environment.
Therefore, experiments should be set up in which the number of machines is varied
for the same computations. By this, the developed system mainly can be proved
to be an appropriate solution for accelerating computations with the aid of mul-
tiple machines. Again the overhead time of distributing jobs and data can be
investigated, but this time in a distributed environment, including the drawbacks
of network communication and management of processing instances over multiple
machines.

4.4 Results

In this section, the results of the di�erent experiments are presented. The results
are discussed with respect to the di�erent aspects mentioned in the previous section.

4.4.1 Performance on a Single Machine

In the �rst experiment, the performance of the realizations of Hadoop and GridGain
with Coherence are investigated on a single machine. This is done by setting up
a �cluster� which only contains one machine. Both Hadoop and GridGain allow to
control the number of threads (resp. processes) running on a single instance, i.e.
on one machine. This number is varied in this experiment. The results for doing
Interest Point Extraction are presented graphically in �gure 4.1. The number of
images per job has been �xed to 50.

It can be seen that computation performance increases for both realizations when
increasing the number of threads. Considering enough threads, both frameworks
prove that they can perform better than the standalone, sequentially working im-
plementation without distribution. Hadoop could nearly double up the performance
of the standalone version, whereas GridGain with Coherence achieves a speedup of
about 2.5.

But as predicted, both frameworks perform worse compared to the standalone
version when only allowing one thread for execution of the map tasks. This is due
to the additional overhead of distribution management. The results also show that
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Figure 4.1: Performance of Interest Point Extraction, parallelized on a single ma-
chine: speedup is limited by the number cores.

increasing the number of threads does not lead to a linear increase of performance.
In this setting, this can be explained by looking at the machine hardware: the
machine only has four logical cores (resp. two physical cores with support for
Hyper-Threading), which forces multiple threads to share these resources. Therefore
performance not only does not increase linearly, but also decreases when having too
much threads running at the same time, as can be seen when having more than �ve
or six threads with Hadoop.

Also notable is the observation that performance relatively decreases a bit when
looking at Hadoop with 5 and 7 threads and GridGain/Coherence with 7 threads.
The reason for this is not known, but it could be due to a load imbalance because
of an odd number of threads.

The second experiment investigates the k-Means algorithm. In contrast to the
Interest Point Extraction setting, doing k-Means clustering requires to distribute
data sets which may be very large. Since the following experiment is done on a
single machine, distribution of data is actually not needed, but done anyway due to
the design of the developed system. Nonetheless, this must only be done once, the
data then is distributed for the following, usually large number of optimization iter-
ations. Assuming a performance gain for these iterations, the additional overhead
for distributing the data during initialization usually is amortized.

The experiment has been done with k = 100. In contrast to the Interest Point Ex-
traction, not the duration of the whole process has been measured, but the average
duration of a single optimization iteration. By this, the overhead for initialization
and distribution of data is discarded in the results, but as said before this overhead
is negligible when doing a large number of iterations. The performance results of
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doing k-Means clustering on a single machine are shown in �gure 4.2.

Figure 4.2: Performance of k-Means, parallelized on a single machine. Hadoop
underperforms because it reads data from �le system for each optimization iteration.

First of all, it can be seen that GridGain and Coherence perform similarly well
as in the �rst experiment, whereas Hadoop never reaches performance of the stan-
dalone version. This can be explained by the fact, that Hadoop has to read the
partial data sets from �le in each iteration. This produces too much overhead and
completely undermines a possible performance gain due to parallelization in this
setting. GridGain and Coherence perform better in this case, since the partial data
sets do not have to be read from �le, but are kept in memory for all iterations. By
this, the overhead for reading the input data in each map is small enough to gain
performance due to parallelization.

One may notice that the results show a small performance increase of GridGain
with Coherence over the standalone version, even when allowing only one thread
for computation. As expected, the performance should stay below the standalone
version because of the overhead of the distributed system. In this case, the reason
for this relies in slightly di�erent implementations of the two versions3, which results
in a better overall performance of the distributed version. This also shows that the
time overhead of GridGain with Coherence does not preponderate that much.

4.4.2 Performance on Multiple Machines

In this experimental setting, the number of machines is varied. This means, in con-
trast to the former experiment on a single machine, that this setting really utilizes a

3More precisely, the k-Means implementation of RapidMiner follows a very strict object-oriented
design, wrapping some array operations into method calls. This implementation has been modi�ed
to adapt to the MapReduce model of the developed system, thereby making use of arrays more
directly in some places.
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distributed environment, including potential drawbacks of network communication
and cluster management. The number of threads per machine has been chosen as
2 in order to have a �natural� utilization of the two physical cores on each machine,
trying to avoid a�ects arising from Hyperthreading or from having too much threads
competing for resources on the machines. First, Interest Point Extraction has been
done on multiple machines with both Hadoop and GridGain with Coherence. Figure
4.3 shows the performance gain with both frameworks when increasing the number
of machines in the cluster. The number of images per job has been �xed to 20. By
this, the number of jobs is large enough to appropriately make use of the available
processing slots on all machines.

Figure 4.3: Performance on multiple machines: for Interest Point Extraction,
speedup increases proportionally with the total number of threads.

When increasing the number of machines, both frameworks achieve speedup,
even though Hadoop again does not perform as well as GridGain/Coherence due to
its greater overhead. However, as one can see in the Figure, performance increase
for both frameworks has a proportional relationship with the number of machines.
Even though this experiment only shows performance scalability on �ve machines,
it is reasonable to assume that adding more machines further increases performance
in a similar way. However, a limit is at least given by the granularity of the tasks
[32]. If number of tasks is too small, the job computation cannot be balanced prop-
erly on newly added machines and performance increase would not be proportional
anymore.

This can be seen in the following experiment (Figure 4.4). K-Means clustering
has been distributed on multiple machines. Again, each machine runs with two
threads, the parameter k has been set to 200, the number of tasks is 20 in this
setting. As in the single machine case, Hadoop does not perform well for k-Means,
since it has to load the subsets for task computation from �le in each iteration. In
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contrast to this, k-Means with GridGain/Coherence is up to 7.5 times faster than
the standalone version when using 4 machines (i.e. 8 threads in total), which is
almost a linear speedup. By this result, it is shown that the developed system can
bring almost ideal performance gains in some cases.

Figure 4.4: Performance on multiple machines: using GridGain/Coherence, k-
Means has achieves nearly linear speedup with the total number of threads. How-
ever, load imbalance stops this increase for �ve machines in this setting.

However, the previously indicated limits due to task granularity can also be seen
in this Figure. In the case of �ve machines no more speedup is achieved. As said
before there are 20 tasks in this setting, which implies an optimal load balancing of
4 tasks per machine. After several repititions of the experiment, it turned out that
some of the machines were assigned �ve or 6 tasks, which decreased performance
down to the case of four machines. This imbalance is caused by Coherence, which
gives no control over how data is distributed exactly and which not necessarily
aligns data distribution to the needs of computational aspects.

Summarizing the results, it turns out that GridGain in conjunction with Coher-
ence is a more performant solution than Hadoop when considering the problem con-
texts of Interest Point Extraction and k-Means within RapidMiner. It furthermore
has been shown that both frameworks can lead to performance gains on multiple
cores as well as on multiple machines. Especially GridGain and Coherence are able
to almost linearly scale in performance in some cases. However, task granularity
sets limits for performance increase.
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Chapter 5

Conclusion

In the �nal part of this thesis a short summary about the contents of this work and
its results is given, as well as an outlook on possible future work.

5.1 Summary and Results

In this work, the challenges and opportunities of applying distributed computing to
Pattern Recognition and Machine Learning techniques have been examined. It has
been �gured out, especially in the context of the project PaREn, that these tech-
niques usually are very data and computation intensive, which means that scaling
them on multiple machines often becomes a precondition for feasible applications of
such techniques. In this context, it has been shown that the MapReduce paradigm
provides e�ective means for developers to parallelize computations within a dis-
tributed environment.

The main goal of this thesis has been the integration of distributed computing
frameworks with the Machine Learning software RapidMiner. Several requirements
for such an integration have been identi�ed, covering issues arising from distributed
computing with MapReduce and Machine Learning. Probably most important in
this context are data a�nity, i.e. the alignment of computations to data in a
distributed environment, and fault tolerance.

The software frameworks Hadoop and GridGain in conjunction with Oracle Co-
herence have been reviewed in detail as possible candidates for an integration. The
crux of the matter of this discussion has been that Hadoop holds data on �le sys-
tem, whereas a GridGain/Coherence setting holds the data in memory. The latter
one has performance advantages in cases where datasets are small enough to �t in
memory, as it is in the case of RapidMiner.

A system has been developed which integrates the presented distributed comput-
ing frameworks into RapidMiner. The system provides an intuitive MapReduce-like
interface which takes care of the special needs arising when applying MapReduce
to Machine Learning techniques. In addition to this, an abstract Operator has
been designed, which seemlessly embeds the systems functionality into RapidMiner
processes, thereby allowing RapidMiner developers to enable their processes and
algorithms to utilize distributed computing capabilities.

The applicability of the system has been shown by implementing two techniques
on top of the system, which arise from Concept Detection in Videos with the Bag-
of-Visual-Words approach: Interest Point Extraction and k-Means clustering. The
methods could easily be designed and modi�ed to �t into the MapReduce model
o�ered by the system. Performance evaluation results have shown, that by utilizing
multiple cores or machines by means of the developed system, it is possible to signif-
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icantly accelerate these processes. Speci�cally when using GridGain and Coherence
as distributed computing framework, the system is able to achieve nearly linear
speedup with the number of threads and machines in some cases, for example when
doing k-Means clustering. It also has been shown that Hadoop performs worse than
GridGain with Coherence in the context of RapidMiner, due to its �le system data
management.

5.2 Future Work

There are di�erent issues concerning RapidMiner and the developed system which
are of interest for further development and research e�orts. Since the developed
system already has shown good results regarding the applicability and performance
of Interest Point Extraction and k-Means, it seems natural to explore the possi-
bilities for applying other Machine Learning techniques like SVMs, PCA or neural
networks on top of it.

Other techniques, which are especially important in the context of PaREn, are
cross-validation or di�erent parameter optimization methods. It turned out that the
implementations of these techniques in RapidMiner are very di�cult to parallelize
within a distributed environment, since they naturally include completely nested
RapidMiner pocesses which cannot trivially be serialized and executed on another
machine. Further e�orts should consider the exploration of possibilities to distribute
these methods, and especially nested RapidMiner processes, on multiple machines.

From a software engineering point of view there are several apspects which are
worth considering. The testing of di�erent serialization frameworks may lead to
better performances regarding the communication, distribution and access of data.
Moreover, other frameworks for distributed computing could be reviewed and evalu-
ated in the context of the developed system. Regarding the computational aspects,
this could be Terracotta1, which is a framework for distributing applications on
JVM level, or the more heavy-weight Grid Computing framework Globus Toolkit 2.
Regarding the data grid functionality, di�erent caches could be tested within the
developed system, for example Jboss Cache3 or Hazelcast4. Exploring the oppor-
tunities of other frameworks may bring bene�ts in performance and foster further
integration with established tools for distributed applications.

In general, RapidMiner is not intended for distributed computing in the �rst
place. The handling of data sets therefore is mostly designed to �t in main memory
and is limited by the heap size of the JVM. Even though RapidMiner already can do
large scale data processing by means of connecting to databases and reading large
data tables in batches, it lacks on doing this in a parallelized and distributed man-
ner. Combining the principles of distributed computing with large scale data access
for example by means of databases involves great potentials for RapidMiner. A pos-
sible step in this direction has been taken in this thesis by using a distributed cache
for spreading the data on multiple machines, while holding it in-memory. Further
developments could extend the data handling of RapidMiner to support transpar-
ent representation of distributed in-memory datasets within RapidMiner processes.
Additionally, such an representation could make use of underlying databases within
a distributed environment.

1http://www.terracotta.org/
2http://www.globus.org/toolkit/
3http://www.jboss.org/jbosscache
4http://www.hazelcast.com
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Appendix A

k-Means Clustering

The k-means clustering problem is to determine k subsets (S = S1, ..., Sk) in a set
of n observations x1, ..., xn, in which all observations belong to the subset Si with
the nearest mean µi. Additionally, the subsets must be chosen in order to minimize
the within-cluster sum of squares.

argmin
S

k∑
i=1

∑
xj∈S

‖xj − µi‖2 (A.1)

Since the general k-Means problem is NP-hard [1] there is no algorithm known
which always �nds the optimal solution in appropriate time with respect to prac-
ticability. Therefore usually a heuristic algorithm is used. This standard k-Means
clustering algorithm was �rst proposed by Lloyd [29] and consists of the following
steps:

1. Pick k cluster means µ1, ..., µk randomly.

2. Assign each observation xi to the subset Sj with nearest mean µj .

3. Recalculate all cluster means µj for all subsets Sj .

4. Go to step (2) as long as at least one xi changes its assignment in step (2) or
as long as there has not been a maximum number of iterations.

Since the algorithm is heuristic, it is not guaranteed to �nd the optimal solution
according to Equation A.1. Thus, it is common practice to have several runs of the
algorithm with di�erent starting means and choose the result with minimal within-
cluster sum of squares. Even though the solution may not be optimal, it is often
su�cient in practice.
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