
UNIVERSITÄT KAISERSLAUTERN

Evaluation of Parameter Influence and

Dimensionality Reduction for CBIR

Systems using Local Features, TF-IDF

and Inverted Files

by

Sebastian Palacio

A thesis submitted in partial fulfillment for the

Bachelor degree

in the

Department of computer science

April 2010

http://www.uni-kl.de
file:spalaciob@gmail.com
http://www.informatik.uni-kl.de

.

Declaration of Authorship

I, SEBASTIAN PALACIO, declare that this thesis titled, ‘USING TF-IDF AS AN IM-

PROVEMENT METHOD FOR IMAGE RETRIEVAL ENGINES’ and the work pre-

sented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a bachelor degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

.

“I know that you believe you understand what you think I said, but I’m not sure you

realize that what you heard is not what I meant.”

Robert McCloskey

.

UNIVERSITÄT KAISERSLAUTERN

Abstract

Department of computer science

Bachelor degree

by Sebastian Palacio

Although there has been extensive work on content-based image retrieval, there has

been a lack of benchmarks and in-depth analysis that quantify the impact of widely used

techniques such as PCA, inverted files or TF-IDF in terms of quality (i.g. similarity) and

speed gain. This thesis describes benchmarks that measure the variations in performance

experienced by a CBIR system when such techniques are included. This work also

studies the behaviour of a CBIR engine when PCA is being applied on early stages of

the feature extraction procedure in order to preserve as much information as possible and

keep its structure as intact as possible while addressing the curse of dimensionality and

computational speed issues. Major conclusions that can be drawn from the experimental

results are that TF-IDF provides a low-cost and very stable boost in performance and

that the use of PCA does not necesarily imply a drop in performance but it can actually

help to reduce the influence of noise in the data and therefore improving quality.

http://www.uni-kl.de
http://www.informatik.uni-kl.de
file:spalaciob@gmail.com

.

Acknowledgements

Whenever I reach a milestone in life, I realize how little my effort would have meant

without the support of so many people. I’d like to start by thanking my mother An-

gela and my father Luis whose unconditional support is the foundation of all that I’ve

achieved so far. In the academic field, I’d like to thank all the good teachers I’ve had

the honor to meet for they have reaffirmed my passion for what I do; Graciela Ville-

gas, Juan Guillermo Lalinde, Jose Luis Montoya, Wolfgang Effelsberg, Gregor Schiele,

Richard Sueselbeck and Carlos Mario Jaramillo are just some of them. I also wish to

thank the bad teachers for they gave me the strength and the courage to carry on, even

when I was not feeling comfortable with the conditions. I would like to thank AIESEC

for giving me the opportunity to expand my frontiers and providing me with the means

to find the way to Kaiserslautern and to the DFKI. I wish to thank my friends for the

extracurricular company, and for keeping me sane. I’d like to thank Sebastián Castillo

for showing me that no problem is too hard to not give it a try, to Daniel Acosta for

always being there and Carlos Bercianos for feeding me and taking care of me when I

forget to do it myself. I’d like to give a special mention to Prof. Thomas Breuel and

all the people at the (former) IUPR group at the DFKI-KL for making me feel welcome

among them, for sharing their knowledge, teaching me and for giving me the opportunity

to be a part of the group; to Christian Schulze, thank you for believing in my skills and

for encouraging and supporting me since I arrived in Kaiserslautern. Finally I also want

to make a special mention to Prof. Klaus Madlener for his tremendous help in getting

me enrolled at the University of Kaiserslautern.

To all of you, thank you very much.

viii

.

Contents

Declaration of Authorship ii

Abstract vi

Acknowledgements viii

List of Figures xii

List of Tables xiii

Abbreviations xiv

1 Introduction 1
1.1 Motivation . 1

1.1.1 State of the Art of Image Retrieval 1
1.1.2 Keeping the Balance: Scalability vs. Reliability 2

1.2 Motivation for using TF-IDF and Patch-Based Approaches 3

2 Background Theory 5
2.1 Image Features . 5
2.2 Local Features . 7
2.3 Invariant Features . 7
2.4 Distance Measures . 8
2.5 Theory and Algorithms . 9

2.5.1 Comparison with Text Retrieval Methods 11
2.5.2 Inverted File . 15
2.5.3 Term Frequency - Inverse Document Frequency 15
2.5.4 Principal Component Analysis . 16

2.6 Previous work . 17

3 Materials and Methods 21
3.1 Dataset: INRIA’s Holiday data set . 21
3.2 MoViMoS . 21
3.3 Baseline Establishment . 22

x

Contents xi

4 Results 25
4.1 Baseline . 25
4.2 Optimizing the TF-IDF Measure . 25
4.3 Getting the Best of the Two Worlds . 26

5 Discussion 29
5.1 Baseline . 29
5.2 Optimizing TF-IDF . 30
5.3 Combining Analysis . 33

6 Conclusions 35

7 Further Work 37

A Definitions and other results 39
A.1 Mean Average Precision (mAP) . 39
A.2 Distance Measure Comparison . 40

Bibliography 41

List of Figures

1.1 Basic CBIR Procedure . 2
1.2 Basic CBIR Querying Procedure . 2
1.3 Similarity comparison . 4

2.1 Color histogram . 5
2.2 Local color histogram . 6
2.3 Texture map . 6
2.4 Blob and Edge detection . 7
2.5 Local Features . 8
2.6 Distances . 9
2.7 Keypoint detection . 11
2.8 Difference of Gaussians . 11
2.9 Keypoint descriptor . 12
2.10 Text retrieval . 13
2.11 Codebook generation . 14
2.12 CodebookMatching . 14
2.13 Inverted file . 15
2.14 Patch-based method and TF-IDF . 16
2.15 PCA . 17

3.1 Holiday DS . 22
3.2 MoViMoS baseline system . 23

4.1 Baseline Results . 26
4.2 TF-IDF experiments . 26
4.3 Combination experiments . 27

5.1 Noisy patches . 30
5.2 Image descriptor structure . 31
5.3 Sparse clustering . 32
5.4 PCA clustering . 33

1Image of Lena has been taken from: http://www.cs.cmu.edu/ chuck/lennapg/
2All other external images have been taken from www.freepixels.com,
www.freedigitalphotos.net and www.designpacks.com

xii

List of Tables

A.1 Distance comparison . 40

xiii

Abbreviations

TF-IDF Term Frequency - Inverse Document Frecuency

PCA Principal Component AnalYsIs

CBIR Content-Based Image Retrieval

IF Inverted File (or Inverted Index)

visword Visual Word

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Feature

NN Nearest Neighbor

xiv

Chapter 1

Introduction

In this chapter, a brief overview of Content-Based Image Retrieval, along with the issues
and challenges that this field presents to science, is going to be conducted as well as the
description of the contributions this thesis makes.

1.1 Motivation

The field of Content-Based Image Retrieval (CBIR) is one of the most interesting and
captivating research areas in computer science now days. It has a lot of potential in a
large number of scenarios and it seems very promising in terms of the results researchers
are obtaining. This work is going to focus on some approaches and techniques used in
this field for which detailed analysis have been missing, and combine them in a way so
that the benefits they provide can be maximized, resulting in a more robust and effective
system due to the increase in quality and tolerance to noise.

The idea is to analyse the way CBIR systems are currently being built, the methods
that are being combined and the order in which they are implemented. Then a test
scenario is proposed based on the results obtained by the other CBIR engines and then
the tested system is going to be slightly altered to see if that produces a variation on
quality measures, namely time consumption and accuracy of the results being displayed
to the end user.

1.1.1 State of the Art of Image Retrieval

In its very essence, the procedures followed by a CBIR engine can be described by a
generic method, regardless of their particular algorithms and techniques. Figure 1.1
illustrates the basic procedure to build a CBIR engine. It simply scans the image
describing certain characteristics or features and then it represents them using efficient
and meaningful structures. This structures are then stored together in a database so
that they can be retrieved later.

Once the database is loaded with the feature representation of the processed images, it
is possible to ask or query the system to get the most similar images it has indexed using
an image that is not contained in the database. The system will then scan the image

1

Chapter 1. Introduction 2

Figure 1.1: General procedure used by CBIR engines to build their DB. Properties are
extracted from an image, represented in a standard way and then stored in a database.

that served as a query, extract the same kind of features as from the reference images
and compare them separately. The images with the lowest distance are considered to be
the most similar images (also known to as the hits).

Figure 1.2: Querying procedure once the DB is loaded. A query image is processed
the same way as the images in the database. Then the data from the query image
is compared against the one of the images in the database and the results are sorted

according to the similarity metric in use.

Now the most interesting and critical part of a CBIR engine is the kind of features that
are going to be extracted for comparison (and the method by which this features are
going to be extracted and stored). There are countless approaches to analyse the data
within an image, all of them offering certain kinds of information about color, texture or
shapes. Most of these methods are treating the image as waves, as a collection of pixels,
or as n-dimensional histograms (in the case of grey scale images for instance); there are
also analog techniques that borrow some principles of some other domains such as the
text domain and treat images in a similar way words and documents can be indexed.
Finding the right features and the way they have to be combined together is of critical
importance to achieve good retrieval results. More details about the different features,
their structure and advantages are mentioned in chapter 2.

1.1.2 Keeping the Balance: Scalability vs. Reliability

Given the size of today’s online image repositories [1–4] (e.g. Flickr, Facebook, Pho-
tobucket, ImageShack) and web-users’ surfing preferences regarding waiting times and

Chapter 1. Introduction 3

quality of the information, an ideal CBIR engine would be able to operate on a nearly
unlimited body of images and throw optimal results in a very short time. The problem
of space, time and quality becomes an issue once the DB grows large enough. To save
space in the DB, there are a lot of well known image compression algorithms but since
the DB also has to store the features that were extracted for each image, techniques
have to be developed in order to compress or to dismiss parts of the additional data that
is further describing every image.

Using a naive approach, the more images there are in the database, the more comparisons
the system has to perform in order to find the most similar image (also known to as the
nearest neighbor or simply the NN). In an ideal environment, it would be preferable to
store as much information as possible about an image but comparing all this data would
slow the system down and it eventually would become unusable because of the time it
would take to perform a single query. Sometimes CBIR engines implement algorithms
that use the notion of approximate NN [5, 6] which basically consist on dividing the
information in batches so the list of possible NN is quickly being narrowed down; they
also can establish a particular criteria to truncate the searching cycle and return the
best NN found so far. This would make the system faster but it obviously implies that
sometimes the optimal solution is not going to be retrieved (i.e. affects the system
quality wise causing a drop in performance).

One aspect of CBIR systems that has always been rather difficult to measure is the
quality of the results they retrieve. The notion of “similarity” in the image domain
hasn’t been formally established yet and at the end, only the human judgement can
determine if an image is similar enough to another image based on the aim of the search.
Sometimes some people might disagree about whether two images are similar or not.
Figure 2.14 tries to illustrate three examples of such scenarios: the first one compares
an apple in the grass with a green rectangle and a red circle; although their shapes are
similar, the amount of colors and the textures do not match at all. The second one
compares a field of roses against just three roses (which correspond to a zoomed version
of the image above. The last one shows an image of an island and a picture of a horse.
How similar they really are?

This last aspect is better known as the semantic gap. The general notion of the semantic
gap referes to the difference between the representation of a particular object in two or
more languages and the information that is being omitted when using one or the other
language. In the image domain, emphasis can be done on very different visual properties
that need to be parameterized (refer to chapter 3 for some of this properties) in a way
that they can be linked back toghether and reflect the interpretation that a human being
can give to an image.

1.2 Motivation for using TF-IDF and Patch-Based Ap-
proaches

As mentioned in subsection 1.1.1, the amount of features that can be extracted from an
image is very numerous and it is almost impossible to put them all together. One of
the most successful and wide-spread features for image representation is the patch-based
approach which basically finds all the most “interesting” areas within an image and then
describes their shape and texture. This method is considered to be very reliable because

Chapter 1. Introduction 4

Figure 1.3: Sometimes not even humans can agree about the notion of similarity.

it can handle a wide range of different changes in the structure of the image (it doesn’t
take color into account). Rotation, scaling and affine transformations in general can be
tolerated if within a certain range. It is normally being used as the base of all CBIR
engines now days [7–13]. More details about how the patch-based approach works are
giving in chapter 2.

The TF-IDF scoring system is a method taken from the text domain to determine the
relevance of certain words in a document. A basic example would be if two documents
contain the word doctor ; the first document is a medical report and the second one is a
fairy tale. In the first one, the word doctor can appear multiple times but it won’t give
too much information about the actual content of the report whereas the occurrence of
the same word within the second document would provide information that could be of
relevance in classifying that particularly fairy tale (e.g. the existence of a character who
is maybe a doctor).

This two techniques can be merged together by classifying the patches obtained by the
patch-based approach according to some pre-defined vocabulary or codebook. Every
occurrence of a particular vocabulary entry is then accumulated and a histogram of
vocabulary entries is generated. Since the vocabulary is known in advance and it is
restricted in the amount of terms it can hold, a TF-IDF score can be computed so that
the terms in the vocabulary that aren’t important enough can be dismissed or punished
and the relevant ones are rewarded by getting a better score. This way, the patch-based
approach gets a boost in performance by giving more or less importance to some parts of
the descriptor it generates. Throughout the development of this thesis, this combination
will show that performance is increased while keeping time and memory overhead to a
minimum.

In this chapter, a generic description about CBIR has been provided, how it works and
why is it interesting to try to further improve such systems and therefore, justifying the
work presented on this thesis.

Chapter 2

Background Theory

In this chapter, there will be a general overview of some of the main techniques, methods
and theories that underlie CBIR systems; the kind of information that can be extracted
from an image and the way it is being represented in a computer. Finally there is a
review of some previous work that has been done in the field of CBIR that closely relates
to the ideas being developed in this thesis.

2.1 Image Features

An image can be viewed as more than a collection of separate pixels. There are countless
relations that can be found among pixel values according to the scale, interpretation and
even the notation being used for a particular image. Lets start by giving a very brief
overview of the most commonly used elements that CBIR engines focus on while scanning
an image.

Color

Figure 2.1: A global color histogram is created from the picture of a rainbow.

Color would be one of the most obvious things to focus on when analysing an image.
On a global scale, an image can be represented as the occurrences of a color within
the image, creating a histogram where every entry corresponds to a different color and
the height of each entry would be the amount of pixels that have that particular color.
Figure 2.1 shows a simple example on an image of a rainbow and its corresponding global
color histogram. Another approach to take advantage of color would be to segment the
image and generate local histograms for each image segment as shown in Figure 2.2.

5

Chapter 2. Background theory 6

Figure 2.2: Several local color histograms can be build on segments of an image.

Texture

Almost all objects that are normally caught on images, contain certain local patterns.
These different patterns occur due to the type and structure of material the objects are
made of. The variations on the pixel intensities and the existence of patterns within
those intensity variations are the ones that texture features are focusing on. This kind
of “repetitive” change in certain parts of an image can be represented as gradient vectors
and with those, texture can be indexed by creating a histogram just like the one used
with the color features but this time, every bin will represent a certain kind of texture.

Figure 2.3: Although this is just a grey scale image, the shapes are clearly recognizable
due to the difference in their texture.

Shapes

Shapes can be considered as a particular kind of texture. Since shapes also rely in
the detection of edges, corners or boundaries, these methods look for strong intensity
variations within a small area. This changes are then often represented as gradients and
therefore the relation to texture.

Chapter 2. Background theory 7

Three of the main shape detector approaches are the edge, blob and corner detection.
The edge detection is focused at finding strong variations in the intensities of an image;
the corner detection works just as the edge detection but additionally, it looks for sudden
changes on the direction of the edges; finally, blob detection operates on smooth images
that can’t be analysed by neither an edge nor a corner detector.

Figure 2.4: Examples of a blob detector (a) and an edge detector (b).

2.2 Local Features

As stated before, the local features have been one of the most successful methods that
are being used in current CBIR systems. The idea of local features takes into account
the relations between the data withing a neighborhood. Properties such as geometry,
color distribution or texture can be indexed to represent as much data from an image
as needed. This way, a finer analysis can be done and more relevant information can
be retrieved from a single image. Depending on the type of data being analysed in the
image, local features provide a more robust way of collecting data. Figure 2.5 shows
an example of two images that are completely different between each other but have
very similar global color historgrams. In this scenario, local features can give more
information about the distribution of color among certain images and tell a potencial
system that the images are not as similar as they seem at first sight.

2.3 Invariant Features

With some frequency, images might contain information about three dimensional spaces.
Everytime we take a picture of an object or a person, all the spacial information gets
reduced or lost, making the recognition of 3D objects a much more challenging task.
If a CBIR system wants to identify and retrieve images based on the appearance of a
particular object, the system should be able to recognize the object even if the camera
has a different angle, if it is at a different distance or even if partialy occluded. For

Chapter 2. Background theory 8

Figure 2.5: In some scenarios, local features can provide more information to make a
decision on weather two images are similar between each other or not.

this kind of scenarios, invariant features are very useful because they provide robustness
along a variety of changes in an image. The most interesting attributes of this kind of
features are:

• Scale invariance

• Rotation invariance

• Tolerance to slight changes in the viewpoint

• Tolerance to noise and changes to the illumination

As explained in [14], the invariant features can focus on the intensities of the images
(i.g. processing a greyscaled version of the image) as well as in their full color version.
A very popular invariant feature developed by [15] makes emphasis on the texture of
an image and it is able to maintain the consistency among transformed versions of
the image (e.g. affine transformations). This algorithm, known as the Scale-Invariant
Feature Transform (SIFT), exploits the gradients to describe an image as a set of local
regions that are going to be considered as interesting within that image. Although there
are many variations of it [16, 17], it’s still not robust enough to work as the only image
description technique but it does provide a baseline upon further enhancements can be
built on.

In this work, features are going to be extracted from a data set of images and they will
act as the base for further calculations in order to improve the behaviour of a CBIR
system.

2.4 Distance Measures

So far, several methods to detect and represent image data have been described. Another
aspect that influences how a CBIR engine sorts the result images of a query is the
function that determines how similar the image descriptors in the database are. This is

Chapter 2. Background theory 9

a very critical part of the system since it is here where the semantic gap becomes more
evident. Depending on the type of data being compared, an adequate distance measure
(also know to as dissimilarity measure) should be used so that the semantic gap can
be shortened as much as possible. One aspect to consider when choosing the distance
function is that it takes advantage of the structure of the data (e.g. histograms, scores,
coordinates) and that it establish a total order relation among the set of images in the
database. So far, all features being described here can be represented as histograms and
hence, the dissimilarity measures that are suitable for such data structures are (among
others)[18]:

• Euclidean distance

• Manhattan distance

• Jensen-Shannon divergence

• Chi-squared distance (χ2)

The Euclidean or L2 distance just refers to the distance between two points in an eu-
clidean space. The Mannhatan distance (also known under other names such as the
taxicab or L1 norm) reproduces the distance a car would have to travel between a city of
pure squared blocks, like a taxi in the city of Manhattan would have to and therefore the
name. Another way to see it is the way a king can move in a chessboard. The Jensen-
Shannon (also known to as JSD) is a distance measure for probability distributions.
Departing from the fact that the image descriptors follow some kind of distribution,
this function can be used to rank results in a CBIR system. Last, chi-squared distance
is used as a correspondance measure to the distributions of the χ2 with k degrees of
freedom.

Figure 2.6: The dissimilarity measure used in a CBIR engine can cause an important
impact on the results. The distance measure is the one that tries to breach the semantic

gap.

2.5 Theory and Algorithms

In this section, there is a more detailed explanation about the algorithms to extract
image features as well as an in-depth review of the theory undelying them and the
structures they take advantage of.

Chapter 2. Background theory 10

Regardless of the implementation details and even some changes on the procedure, a
patch-based feature extraction follows a simple line of execution that involves three
steps:

image preparation: This is a pre-processing step to enhance the characteristics of
the image. This processing stage can be skipped but in some cases it would greatly
enhance both, time consumption during feature extraction and quality of the results
in terms of similarity. In this stage the image can be scaled to a specific arbitrary
resolution that meets the requirements of the system. Normally images will be resized
to a resolution below the 1 megapixel threshold. This measure is rather empirical and
it can vary depending on the requirements of the system. An image scaled to VGA or
SVGA is still containing enough information about the texture to be described by the
patch-based method and yet not too many pixels to be scanned. It’s always good to keep
the compromise between time and quality. That way the user doesn’t get tired of waiting
while the results being retrieved meet the expectations. Another adjustment that can
be made prior to feature extraction is a light normalization and grey scale conversion.
Even if this method is tolerant to illumination changes, the detection of the interest
points will be faster and therefore improving time performance. This is because image
normalization makes the noisy areas in the image more flat and hence the actual edges
can be detected more easily. Some times, smooth areas such as a wall or a piece of paper
can get noicy because of lossy compression algorithms or even by scaling procedures [19].
Three-band images can also be processed as proposed by [17] but it also adds overhead
and it doesn’t improve resutls in a significant way. Since there are many ways to embed
color information to a patch-based search, considerations about the impact of color in
such systems is out of the scope of this work.

interest point detection: During this stage, the system goes through the entire
image looking for what is known to as keypoints or interest points. A point is considered
to be interesting if it meets two basic conditions according to [15, 20, 21]:

• The surrounding area of this point presents a significant change in illumination
(i.g. is in the middle of an area with a high contrast). Common areas for this are
edges, corners or borders.

• This area is not prone to change too much in the presence of noise. To evaluate
that, the potential area of the image is analyzed at different scales and then reaffirm
that this is still being an interest area even when scaled. The scaling is done using
a Gaussian distribution which blurs the image.

In order to find such points, [15] uses an iterative scaling and filtering method that tries
to reproduce the way humans extract relevant information from images. It consists of
passing the image through a couple of blured images (using Gaussian filters) and then
comparing them by substracting their values. By doing this, the relevant parts of shapes
and edges remain in the image whereas noicy parts and clutter get reduced. This process
is done several times at different scales in order to assure the stability of the edges. An
example of how such a filter looks like is shown in Figure 2.8. In this example things
like the face of the lady, her hat, the feathers and even parts of the texture of the hat
are being kept. Glitter from the illumination and different shades of skin tones are no
longer visible in the filtered image.

Chapter 2. Background theory 11

Figure 2.7: Example of a detected keypoint. It is represented using a vector that
shows the direction on which the difference of intensities is pointing to and how strong

that change is (norm of the vector)

Figure 2.8: By applying a DoG, the image keeps the relevant information about the
shapes and the edges that are going to serve as candidates to become interesting to the

Interest Point Detector.

interest point descriptor: Once a series of keypoints has been detected in an image,
the next step would be to represent those keypoints and their surrounding area in a
meaningful and efficient way. There are several approaches [14–17] but for this work the
Scale-Invariant Feature Transform (SIFT) descriptor was used. This SIFT descriptor
takes the coordinates of every keypoint and takes an area of 16x16 pixels around that
keypoint and then it assigns an intensity gradient vector to each pixel in that grid.
The gradient is computed using a 4x4 subwindow. Then, all vectors are normalized
and grouped together forming a matrix of gradient orientations (see Figure 2.9). Every
vector on each ’star’ is representing the accumulated impact of every single gradient that
was first computed, to any of those main orientations. Finally, since their origin is the
same, these ’stars’ can be represented as an 8-bin histograms where each bin correspond
to the magnitude of one of the main gradients.

2.5.1 Comparison with Text Retrieval Methods

Once the patch-based feature extraction has been applied on an image, there will be
n descriptors with 128 dimensions, where n is the number of keypoints that have been
detected in the image. Usually the quantity of keypoints ranges between 2000 and 5000

Chapter 2. Background theory 12

Figure 2.9: Process followed to represent a keypoint. (a) The keypoint is found. (b)
Gradients on every pixel is computed within a 4x4 window. (c) Gradient normalization.
(d) and (e) The magnitud of every gradient is put together to form the final numeric

descriptor array. This process is then repeated for every keypoint of an image.

per image (when scaled to VGA1) and therefore, the cost of storing all this information
for each image would be even bigger than the cost of storing the image itself. For that
reason, further processing should be done to compress these descriptors, still maintaining
a meaningful structure for the comparison of the images.

Turning the attention into other fields where information retrieval has benn successfully
implemented, the text domain appears as one of the most reliable and studied areas
where retrieval engines have succeeded (where Google presents itself as the most solid
example of it). One of the most spreaded way to index text [13, 22] is as follows:

Given a set of documents,a word count is performed. A so called stop list prevents
words that are very common (such as the, of, from, to, etc.) to reach the actual index.
The word count for each document is then alphabetically stored as a list of numbers
that correspond to the amount of occurrences of a particular word. Figure 2.10 shows
an example with three documents that only contain one phrase each. If only the words
cook, dinner, kitchen and work are to be considered for building the descriptor of each
document, they will look like the ones in Figure 2.10 (b).

For this method to be useful and portable to the image domain, it will be necessary to
have three elements:

1Although the number of interest points obtained can be adjusted by manipulating a threshold, the
default values on the original algorithm by [15] output these ranges. They can also be seen on the
experiments carried out by [7]

Chapter 2. Background theory 13

Figure 2.10: (a) Three documents containing one phrase each. (b) Table of word
count for three significant terms in the documents

• A set of terms that represent written words.

• A document-like structure where these terms can be grouped.

• A restricted and countable vocabulary of terms to look for.

At first sight, it can be assumed that keypoint descriptors can play the role of words and
images are the structures to group them (i.g. the equivalent to a document). To build
a vocabulary, it is first necessary to make some adjustments regarding the uniqueness
of every descriptor. An example of this is being shown in Figure 2.10. As the words
cook and cooking refer to the same action, they can be safely joined into the same root
word cook. For this, a dictionary of standardized words is needed and the same concept
can be applied to the image domain. The idea is to create a finite catalog of generic
descriptors that reflect the essence of the descriptors. Such a structure is known to as
the codebook.

To explain this concept, lets assume the descriptors are only 2-dimensional arrays:

Advantage can be taken of the fact that, since the numbers of the keypoints are describ-
ing a particular kind of texture, similar texture would be close together forming clusters
(Figure 2.11 (a)). Then, an algorithm to find the centroids of these clusters is applied
and from then on, every keypoint descriptor can be mapped to a cluster center and the
descriptor will just count as an occurrence of that particular cluster (Figure 2.11 (d)).

This way, the information being extracted from an image, can be compressed and sum-
marized in such a way that it is still meaningful and provides a system with enough data
to be able to differentiate two different images.

Chapter 2. Background theory 14

Figure 2.11: (a) 2D descriptors in space. (b) Center clusters are computed from the
data. (c) A new point appears in space and needs to get a classification. (d) Distance

is calculated to every cluster center and the closest one is chosen.

Figure 2.12: (a) The original image. (b) Keypoints are extracted and matched against
the codebook. (c) The table with the histogram of visual words is generated and the

image gets indexed.

Chapter 2. Background theory 15

2.5.2 Inverted File

Now that the descriptors of an image are being mapped to a generic codebook-based
structure, each image is being represented as one numeric array of size s where s corre-
sponds to the length of the codebook. Figure 2.12 is using a codebook of length 9 (i.e.
there are 9 cluster centers in the complete feature space). For this example, this might
work but given the diversity of the keypoint descriptors generated by the patch-based
feature extraction, the codebooks need to grow much more in order for the clusters to
be meaningful enough. In chapter 3 and chapter 4 it’s being shown how the codebook
size influences the retrieval performance.

The problem that arises when the codebok becomes too large is, again, that of the time
and space consumption and hence it is necessary to address this issue. Fortunately this
phenomena is also present in the text domain. Since even pocket dictionaries contain
over a couple hundred different words which, transposed to the image domain, would
mean a codebook and image descriptors of over 100000 entries, a master index is built
to store all the information in the large descriptors in a compressed way and still not
loose any information. This is achieved by analysing the structure of each descriptor and
taking advantage of their growing sparsity as the number of entries increases. Refer to
[7, 22–24] for further information. It is called inverted file or inverted index and consists
of a list of all the documents that contain a specific term. Figure 2.13 illustrates an
example of how an inverted file looks like when based in a regular index.

Figure 2.13: The original index lookup table (a). Inverted file of the original index
table (b).

2.5.3 Term Frequency - Inverse Document Frequency

As explained in [22], the Term Frequency-Inverse Document Frequency (TF-IDF) is
another technique used in the text domain to improve the quality of the results retrieved.
It is normally used as a weighting score to determine the importance of a codebook entry
relative to the others. The TF-IDF is a product of two terms, the frequency of occurrence
of a term in a document and the importance of that term compared to the rest of the

Chapter 2. Background theory 16

terms. Let i be the current image under investigation, j one term that occurs in i, ni,j

is the number of occurrences of j in i and nk,j is the total number of occurrences of all
terms in i. Then, given |D| as the number of documents and |{d : ti ∈ d}| being the
amount of documents containing term t, the TF-IDF score can be defined as follows:

tfi,j =
ni,j∑
k nk,j

(2.1)

idfi = log
|D|

|{d : ti ∈ d}|
(2.2)

tf -idf = tfi,j × idfi (2.3)

For example in a DB of soccer articles, the word sport or the word soccer are expected
to get a lot of hits. These words are not going to be stopped by the stop list because
they are not frequent in the English language but in this particular scenario, they won’t
add much discriminative information among the documents.

Figure 2.14: Improving reliability by combining the patch-based approach with TF-
IDF scoring.

TF-IDF operates over the common words (or bins in the inverted file) giving them a
low score so that they won’t have a powerful influence when comparing a document
containing this term. On the other hand, words that do not occur very often in a
document but are rarely contained in the rest of the documents would get more relevance
and thus, influencing the final rank of the document containing that term.

For the image domain, the same reasoning can be applied and instead of terms, keypoint
descriptors which are commonly appearing in all the images in the DB are going to score
lower when being compared against other images and vice versa for rare descriptors
occurring in just a few images.

2.5.4 Principal Component Analysis

Principal Component Analysis (also known to as the Discrete KarhunenLove Transform,
Proper Orthogonal Decomposition or the Hotelling Transform) is a data representation
technique proposed by Karl Pearson in 1901 [25] that focuses on the differences and sim-
ilarities of the data itself. It is well known because it helps to compress high dimensional
data [26]. It basically identifies in which directions the data is varying the most. This
directions should be orthogonal to each other (therefore they can be thought of to as
dimensions) so that the data can be fully represented in terms of these new directions.
The other less meaningful directions can be omitted so that they don’t suppose an im-
pact when making comparisons against other PCA filtered data. The information being

Chapter 2. Background theory 17

lost when some of the dimensions are ignored using PCA is not critical because they
are the ones that contribute the least to locate data in space. Figure 2.15 shows the
process of identifying the directions in which the data varies the most (b)-(c), and the
final representation that fixes the non-relevant dimensions to minimize their influence
(d)-(e).

Figure 2.15: (a) The original data in a 2D space. (b) The main directions or dimen-
sions in which the data varies. (c) The data varies more along one of the dimensions
than the other. (d) The data is then represented along the most representative dimen-

sion. (e) Final data representation.

When applied to the image domain, given a high dimensional image descriptor (i.e. a
histogram of keypoints based on a large codebook), the principal components of that
particular histogram can be found and the others can be omitted, reducing the time to
analyse the whole descriptor. This also helps to alleviate the curse of dimensionality
by reducing the number of dimensions to be processed. More information about PCA
can be found in [25, 26]. Examples of CBIR systems with PCA implementations can be
found in [8, 14].

In this section there was a thoughtfully overview of the theory, algorithms and data
structures that can be found in a CBIR engine. All of these concepts and structures are
going to play a fundamental rol in the test scenarios of this work, since they are going to
act as parts of a puzzle. Depending on the order and how are they going to be arranged
and connected to each other, different outputs are going to be obtained. The idea is
to find a way to put them so that it optimizes these outputs and therefore improve the
overall performance of the system.

2.6 Previous work

In this section there is a brief summary of some of the work that has been developed
in the field of content-based image retrieval. CBIR systems relying on the combina-
tion of several approaches to improve both time and quality performance have been
implemented by [7]. They select a variety of techniques to address all of the issues that
impact a CBIR engine (i.e. time efficiency, disk space consumption and high quality
in the results) and propose a series of algorithms that can interact between each other
to raise performance in all aspects. The use of Hamming signatures to improve clus-
tering and the addition of a weak geometry consistency check to further enhance the
stability of keypoints in an image are their main contributions to the field. They show
an improvement of almost 100% (from 0.4 to 0.8 mAP in the best scenario) over their

Chapter 2. Background theory 18

baseline measurements when large a codebook with multiple assignment is used along
with a combination of hamming distance weighting and weak geometry consistency.

Another system that aims to retrieve similar images relying on text retrieval methods
is implemented by [13]. The system specializes on finding key objects along multiple
frames from a video. By combining a patch-based approach (SIFT), a visual vocabulary
built offline and taking advantage of the TF-IDF measure to further improve results, the
system proves to be reliable enough for some test cases that only comprise objects within
a 90 minute film. This restriction is mostly due to the amount of vector quantizations
that the system has to make. They also adopted the concepts of spacial consistency and
stop lists.

There is a similar CBIR engine proposed by [10] whose purpose is to compare two
approaches to identify near identical video shots or images. One of them relies on
hashed color histograms while the other uses SIFT local descriptors and a min-Hash
algorithm for comparison. Although they lack of a ground truth for their experiments,
they were able to deduce that the former approach is more efficient in terms of speed
so they see a potencial use of this technique for video retrieval. The latter shows more
stability and reliablity but looks inconvenient when it needs to be scaled up.

Other prototypes also make use of aditional metadata to filter the results or provide
further levels of refinement in the results as well as dimensionality reduction techniques
to fight the curse of dimensionality and also improve speed. [8] builds a system that
is able to recognize landmark images in a large body of images. They implemented an
unsupervised landmark recognition engine by taking advantage of the SIFT descriptors,
geotag information, region-graph clustering, PCA, and some other filters to clean up the
model from non-landmark images. When the model is used for image content analysis
it reaches 46% accuracy which supports also match the results obtained by [7].

[12] proposes another system that can detect objects and link them to Google Maps or
Wikipedia articles without any human supervision. For that they need to classify the
images they want to “mine” using a hierarchical clustering. This approach was taken
because of its speed and robustness. They also rely on SURF descriptors to improve
time performance and also use the TF-IDF measure to find the best tag for every cluster.
Their results show that the system can reliably identify objects in the query images and
locate them in a map or an encyclopedia.

Some other works have addressed the clustering issue which also presents some diffi-
culties when being used in large scale. Since the codebook can grew indefinitely and
the performance seems to get better as more bins are added to the codebook, handling
big codebooks for NN matching becomes a serious problem. [9] explores a technique
to perform an approximate NN matching through the definition of a hierarchy in the
codebook. This approach can cut the NN search time to a logarithmic scale but still
can deteriorate the quality if the right parameters (such as the depth and the width
of the tree structure that represents the hierarchy) are not set correctly. They show
experimentaly how an image retrieval engine can retrieve resutls in real-time by using
the hierarchical clustering technique.

Alternatively the methods evaluated by [11] explore some other ways to fight the curse of
dimensionality that arises when the vocabulary used for image matching, grows contin-
uously. Approximate NN are compared against a flat vocabulary search. A benchmark
between hierarchical and approximate visual clustering is performed showing that the

Chapter 2. Background theory 19

former can get much better results that the former and yet keeping the same cost in
terms of processing time and storage use. They also took spacial information to refine
the rankings although they point out that this should be enhanced if the system is aimed
to serve a large body of images.

Chapter 3

Materials and Methods

In this chapter there is a brief description of the CBIR system that is used as the
test server and the data that this CBIR engine is going to handle. There is also an
explanation on some basic setup parameters of the CBIR engine that have to be fixed
before starting the experiments.

3.1 Dataset: INRIA’s Holiday data set

In order to be able to test all the proposed techniques to improve the retrieval of a CBIR
enigne, is neccesary to have a set of images that recreates the conditions of an average
data set. For all the experiments in this paper, the INRIA’s holiday data set 1 has
been chosen. This provides a collection of high resolution images that contain different
types of scenes (such as landscapes, under water, fire, man made, etc). All the images
are grouped in 500 test cases where each group correponds to one place or object and
within each group, there are several images. The first one is going to be considered as
the query image and the rest of the images in that group are the result images. These
result images are taken from the same target but with a few variations such as angle,
bluring, illumination, etc. That way, the robustness of the proposed methods to retrieve
the images is being put to the test. Figure 3.1 shows an example of how the data set
looks like.

3.2 MoViMoS

MoViMoS is an extensible content retrieval engine developed by the MADM group at the
DFKI. It is versatile about the types of data that it can handle and is easily extensible
so that new functionality can be embedded with ease. This allows the combination
of specific techniques to extract features from the contents it holds and merge them
together. In this thesis, the MoViMoS platform was used with just images.

1available for download at http://lear.inrialpes.fr/∼jegou/data.php

21

Chapter 3. Experimental setup 22

Figure 3.1: A sample of the Holiday data set.

3.3 Baseline Establishment

Before starting to evaluate experiments, the establishment of some base parameters is
of prioritary importance in order to count with a baseline and compare the effects of the
proposed techniques on such a system.

Given the amount of variables that a CBIR engine can have, it is almost impossible to
evaluate and optimize all of them just based on experimentation. Therefore, some base
parameters (that were not changed throughout all the experiments) have been set based
on documentation and the work of others [7, 8, 13]. Here is a brief list of such variables:

• distance measure: L1 (Manhattan) distance. Although for feature compari-
son, others [7, 12, 15, 27] have used Euclidean distance, Manhattan has shown
(experimentally) better performance than any other.

• descriptor and detector: SIFT feature extractor. Lately there have been other
descriptors that claim to outperform SIFT descriptors such as SURF or Extended
SURF but again, experiments have shown that SIFT still gets similar performance
and yet not so bad at time consumption.

• codebook size: to measure the impact of a growing codebook, a range between
1000 and 15000 has been chosen. This is mainly due to CPU consumption issues
and performance improvement rate.

• performance measure: mean average precision (mAP). This is a common and
widely accepted metric to measure how good a generic data retrieval engine per-
forms. It is based upon the concepts of precision and recall which basically reflect
the amount of retrieved elements that are relevant to the search and the amount of
relevant results that were actually retrieved. More information about this metric
can be found in Appendix A.

Chapter 3. Experimental setup 23

The setup of MoViMoS that was used for testing, follows these steps (note that the parts
of the procedure in italics correspond to the stages of the process that are not part of
the regular behaviour of a CBIR engine. These steps are the ones introduced to improve
performance in the system. A visual description of the procedure can also be found in
Figure 3.2):

1. Take a query image that is not in the data base.

2. Process the image using the SIFT descriptor, obtaining a set of descriptors.

3. Run PCA over all the descriptors and reduce their dimensionality to get only the
most relevant parts of each descriptor

4. Match the patches against the codebook to obtain a single descriptor for the image.

5. Compare the resulting descriptor to the other pre-computed descriptors of the
images in the data base. One time, TF-IDF is used as the only distance measure,
accumulating the scores of every partial TF-IDF result obtained on each cluster of
the query image descriptor.

6. Retrieve the results where the first image is the one with the lowest distance (or
highest score) when compared to the query image.

Figure 3.2: Setup for the baseline MoViMoS system. The stages in dark blue are the
ones considered to be part of a regular CBIR engine. The stages in light blue are the

ones proposed in this work.

This chapter went through the elements used for the experiments and the reasons for
which these components were chosen, namely the data set of images, the CBIR system
and also the base parameters that were fixed through the entire experimentation phase.

Chapter 4

Results

In this chapter, the results of the experimentation phase are being presented as well as
the singularities that the data itself shows as the starting conditions of the experiments
change. Three main scenarios are evaluated: what is the behaviour of the primary setup
with just the base parameters, the process of TF-IDF optimization and the system
response when both approaches are being combined.

4.1 Baseline

Several baselines need to be established before starting experimentation, namely the
performance of a MoViMoS system configuration that recreates the standard procedure
followed by any CBIR engine and also how good the TF-IDF score is when being the sole
resposible for the ranking of the images. These results are shown in Figure 4.1. Again,
the performance is being measured using the mAP metric with an increasing codebook
size so that the impact on more discriminative or pure data can also be seen.

4.2 Optimizing the TF-IDF Measure

In order to improve the performance shown by the TF-IDF scoring so that the impact
on a patch-based system can be maximized, further adjustments can be done to the TF-
IDF. At first, a naive approach to optimize the time and keep the performance is to only
acumulate the TF-IDF scores of the bins in the image descriptor that have higher term
frequencies (i.e. the most common kind of patches being found in the image). If only
10% of the bins where considered, then the time will be reduced (because the TF-IDF
scoring procedure is being truncated) and still most of the information is being kept.
Intuiton also suggests that bins in the image descriptor with just one or two occurences
can often be genereated due to noise or just a non-relevant part of the image.

Another approach that uses more sophisticated techniques consists on taking not only
the most frequent bins but trying to get the most relevant ones. This can be done via
PCA encoding as explained in chapter 2. Keep in mind that the PCA is applied to
the descriptors and not in the final image descriptor. Different levels of dimensionality
reduction where tested to measure how much improvement or decrease this method

25

Chapter 4. Experiments 26

Figure 4.1: Mean Average Precision obtained in the baseline systems for a tradi-
tional CBIR engine (red) and for a system using TF-IDF as its only way to sort image
candidates (green). The results of the former system are higher respect to the values

obtained by the latter setup.

introduces. Given that the patch descriptors being generated have 128 dimentions, a
PCA reduction of 50% and 25% were tested.

The results of the previous expemients are shown in Figure 4.2

Figure 4.2: Results of the experiments with TF-IDF scoring.

4.3 Getting the Best of the Two Worlds

Once the optimal setup for the TF-IDF scoring has been detected, it is time to combine
it with the basic CBIR engine and see how that mixture impacts performance. In order
to determine which of the methods has to have more relevance over the other, an extra
weighting parameter has been added. That way it can be tested if they are both good
or if the first one is affecting the second one or if it is the other way around. Results

Chapter 4. Experiments 27

for this experiments are shown in Figure 4.3. Here, a combination of the regular patch
based nearest neighbor and a TF-IDF weight has been implemented. They are also
given different relevances to see how it affects performance.

Figure 4.3: mAP on a system combining both TF-IDF and L1 distance.

In this chapter a display of the experiments was conducted, showing the charts that
describe the responses of the system in terms of quality (mAP) on the differen scenarios.
It shows how a mixture of a base CBIR with a TF-IDF score can easliy raise quality
measurements.

Chapter 5

Discussion

In this chapter, an analysis on the results obtained in chapter 4 is conducted and the
behaviour of the system along the different scenarios is being supported by the concepts
and theory explained in the previous chapters. Further discussions relate some aspects
of these results with some particular characteristics of the data that is being treated
along with the methods that were used.

5.1 Baseline

The curves described by both baselines are completely different from eachother in terms
of the values in the ordinate axis, yet this is due to the nature of the techniques being
used here. Regarding the baseline of the regular patch-based search there is a very plain
curve which suggest that the consistency of the clustering for this particular setup of the
system was very good. Other factors such as the uniformity of the data in space also
play an important role here and this uniformity can be safely assumed due to the variety
of pictures in the dataset, as described in chapter 3. In an optimal scenario, the data
will form small clusters which at the same time will be grouped together in bigger sets
and so on, as the group of stars in the solar system is just a part of the milky way which
can also be grouped with other galaxies. On the other hand, there is a noticable greater
performance than that obtained by [7] using the same data. This is mainly caused by
the use of the L1 distance instead of the Euclidean distance. This metric has shown
to outperform the euclidean distance and even the Jensen-Shannon divergence metric.
There are also some slight differences and hence of lesser impact between these two
systems such as image scaling, image normalization and implementations of the SIFT
descriptors.

Regarding the performance curve of the TF-IDF scoring system, it can be said that this
results, although small, provide a hint of how much improvement (or decrease) can be
achieved once the two methods are merged together. Even though it is not describing a
significant steep curve, there is a clear evidence of how the size of the codebook impacts
the performance of the TF-IDF score. This does not contradict the first statement about
the clustering of the patch-based system. For this method, is more relevant the amount
of keypoints that fall into a particular cluster (i.e. the distribution of keypoints within
one image) and wether or not this particular cluster is relevant to the dataset.

29

Chapter 5. Results and discussions 30

5.2 Optimizing TF-IDF

After running the modifyed TF-IDF systems, different behaviours can be observed al-
though the same basic principle of optimization was kept in mind.

The first naive approach, parts from the idea that noisy information is being extracted
from the image, kept in the final descriptor and it remains as the descriptor bins that have
just one or two entries. The belief on the existence of such noisy interest points is based
on observations made to some images such as the one in Figure 5.1. Since there could
be many objects in an image that could end up being potencially interesting, the system
identifies all of them. Therefore, by just taking the highest bins in the descriptor, the
risk for this noise to be considered is being minimized and hence, lowering their impact
on the results. Another consecuence of forcing such truncation is that the time spent
in the TF-IDF score calculation can be reduced. The results are not as expected which
suggests that some of the assumptions were not accurate enough or that other factors
are being underestimated. There is a clear drop in performance as a consecuence of the
information loss. Despite this reduction, consistency regarding the codebook growth is
being kept, yet there is not a drastic difference when comparing it to the base line.

Figure 5.1: Observations made to images like these, suggest that there are interesting
points that only introduce noise to the final image descriptor. The image of the Eiffel
tower not only generates interest points of the tower but also the grass and the building
behind (a). In part (b), even when the object of interest (blue) is strongly occluded

(red), there are still noisy parts that could be discarded (green).

There are several factors that make this a bad approach for the problem, starting at the
way TF-IDF works. This is a score that balances entries with a high count and entries
that are more meaningfull or provide more discriminative power. In this scenario, only
the high bins are taken into account and most likely, they are not going to rate very
high. On the other hand, the bins that get a low percentage of the keypoints can get a
better score and although they won’t score too high, they will contribute to get a better
result. After taking a look at the structure of an image descriptor we can get a better
insight of why this happens. Figure 5.2 (a) shows a typical descriptor. In part (b) the
descriptor is sorted by putting the highest bin in the center and the subsequent ones

Chapter 5. Results and discussions 31

on the side. In this last image it can be seen how much information is being lost. The
most critical one is highlighted in green. This bins have the potencial to provide more
information to differenciate an image because it can grow due to the inverse document
frequency. A positive aspect of this approach is that the time spent at acumulating
the TF-IDF score for the whole descriptor gets cut although the compromise related to
quality is decreasing as well.

Figure 5.2: The structure of a 1k image descriptor. (a) Ordered the way the codebook
is sorted. (b) Sorted by puting the highest bin in the center and the subsequent ones

along the sides.

Now, when PCA is being used, a surprising rise in performance of around 7% is reached.
Both PCA test runs show a steady tendency to keep on rising along with the codebook
size. This behaviour suggests that the clustering of the codebook improved by setting
the parts of the descriptors that where not varying too much to a constant value. Math-
ematically speaking, the 128 dimensional points in space are now being represented in
a 64 and 32 dimensional hyper plane improving the chances of forming better clusters.
Since the centroids of the clusters are calculated based on an Euclidean distance, the
more dimensions there are, the bigger the distance that separates the points in a cluster
from the centroid1. Assuming that PCA keeps only the dimensions that are relevant to
an image descriptor, all the other dimensions can be considered as noise. When summed
up toghether, these noisy dimensions can influence the location of the centroids. This
issue becomes more evident as the points becomes more sparse. Figure 5.3 shows that
when dealing with sparse points in space, it is not too evident how the points should
be clustered. When only the more relevant dimension is evaluated, then the clustering
algorithm has better chances to find more stable clusters (i.e. after several runs of the
clustering algorithm with different starting points, it ends up building the same clusters).

1Assuming that the values of these dimensions is not 0

Chapter 5. Results and discussions 32

Figure 5.3: When performing clustering in a sparse space, PCA can help finding
more stable clusters. A possible solution proposed when analysing all the dimensions
available (a) and the one that is most likely resulting when PCA compression is used
on 1 dimension (b). Note how in part (b) the clusters seem more compact and it is

even visually easy to recognize them.

Figure 5.4 shows another example in a 2D scenario. Suppose there are just two dimen-
sions available and the most meaninful one, is the x axis. In order for the data to be
representable in 2D, the non-relevant dimension, y, will be set to zero. If 5 clusters are
to be used to classify all the data, in the first scenario (part (b)), there are some clusters
that were not chosen the best way because of small variations along the y axis that
made the clustering algorithm to end up with a good, yet far from optimal clustering.
In the other scenario (part (c)), since only the x coordinate is used to form clusters,
they get grouped together in a better way and preserve the part of the information
that is more meaningful. Note that the clustering algorithm also introduces other un-
certainty variables (e.g. initialization of starting points, number of clusters, iterations)
that could end up in small variations on the clustering results. Since the problem of ex-
act data clustering is NP-hard [28], approximate clustering needs to be implemented for
production CBIR systems. This means that the optimal solution cannot be computed
in a reasonable time even when handling moderate amounts of data. Nevertheless the
approximate method provides a good approximation in an acceptable time. Efforts to
refine the approximation found by clustering algorithms have been proposed by [29, 30]
(among many others) but the quality (i.g. the similarity of the results compared to the
optimal solution) of the clusters is still depending on the nature of the data being pro-
cessed. In the case of the PCA compressed data, the clusters can also present variations
after several runs of the clustering algorithms but emphasis is made on the impact that
PCA does over the data and the clustering itself.

The fact that the strongly reduced, 32 dimensional PCA performed equal or even better
than the 64 dimensional one in some points, suggests that the amount of significant
dimensions are actually less than 32, giving a compression ratio of over 75%. Still,
the gain in performance was not too drastic between both PCA tests. This also shows
that this method is strong and consistent enough so that it can make an impact in the
patch-based search that ranked very high.

Chapter 5. Results and discussions 33

Figure 5.4: How PCA affects clustering. (a) The original points in a 2D space. (b)
Regular clustering. (c) Clustering when only the X axis is considered.

5.3 Combining Analysis

After finding the optimal setup values for the base system and after tuning up the
performance of the TF-IDF, both approaches are merged together to improve eachother
and raise the quality of the retrieved images. The results of the experiments show a
reasonable improvement for the majority of the test runs. The weight of both sorting
methods was varied to measure the impact on the results. As expected, the curve
wasn’t drastically altered even when the TF-IDF score was the dominant measure. This
confirms the observation about the stability of the patch-based search and the TF-IDF.
On the other hand similar results where obtained when the patch-based search was either
equal or dominanting the search ranking. This behaviour indicates that the TF-IDF is
not only helping by high-ranking the correct results but also by discarding the false
positives and preventing them to climb up to high in the list of candidates.

It is important to note that although this is not a vast improvement it’s still worth using
it because it helps making results less variable every time a new technique is added on
top. Besides, thanks to the dimensionality reduction made by PCA, the cost of keeping
the index structure in memory can go below 75% with PCA models of 32 dimensions
and lower.

In this chapter the discussion on the results of the experimental phase took place. These
results show that with little effort, an increase on quality measures can be achieved
without sacrificing other aspects such as speed and memory consumption. Although
there are many other parameters that can be adjusted in order to get better results
(e.g. keep increasing the size of the codebook, augmenting the PCA compression ratio,
make use of other different datasets, raise the noise level in the dataset), this work
tried to focus on the parameters that seemed more promising at first. Due to time
constrains, many other test were left out of this work. These results prove many of
the concepts undelying the test scenarios (e.g. the use of PCA, TF-IDF, dissimilarity
measures, codebook clustering parameters) and show that it is still possible to keep on
improving.

Chapter 6

Conclusions

This work went through some of the most well known approaches to extract information
about images that can be efficently stored and compared in order to sort them according
to their similarities. There is an emphasis on two specific techniques that haven’t been
properly evaluated and documented until now, namely the patch-based approach and
the TF-IDF scoring. While the former gives a steady base line to work upon, the
latter provides an extra boost of performance while keeping times and disk overload
to a minimum. Since there are many parameters that need to be adjusted, previous
experiences where taken into account as well as some proper experimentation. That
allows the system to gain in performance and stability regarding the results. For the
experimentation stage, reasonable and well tested data sets where employed as well as a
base CBIR engine that was adapted to work with the required data structures. Measures
on the size of the codebook where also performed in order to prove the phenomena about
coarse and fine clustering. At the end, the impact on performance when combining
both approaches is being shown. The assumptions on the stability and the boost on
performance are proven and an analysis on the reasons for this to happen were studied
in detail. Some of the most important observations about the behaviour of the methods
are:

• Term Frequency-Inverse Document Frequency (TF-IDF) can be used as an extra,
easy to implement score to refine an already existing image search index but not
as the primary criteria to sort images since the benchmarks of a system that relies
only on TF-IDF are low compared to a regular nearest-neighbour search based on
histogramized image features.

• Although the Euclidean distance is normally considered to sort a list of image
candidates when using an approach based on invariant local features, the L1 norm
has experimentally shown to outperform the Euclidean distance as well as all
the other distance metrics that are normally used in this scenarios. Refer to
Appendix A for a table comparing them.

• When the patch-based feature extraction and the TF-IDF are combined, an im-
provement of up to 10% was achieved on the Holiday image data set, using mean
average presicion (mAP) as the metric to measure accuracy on the results.

• Taking the highest bins of an image descriptor and discarding the rest, helps
saving time during the calculation of a TF-IDF score but it also implies a drop in

35

Chapter 6. Conclusions 36

performance (mAP) due to the loss of discriminative information that remains in
the unprocessed part of the image descriptor.

• Implementing PCA in an early stage of the image feature extraction along with
the use of TF-IDF in a CBIR system helps improving the clusters for patch-
based features and therefore improving performance (mAP). An encoding of 50%
and even of 75% using PCA on 128 dimensional SIFT descriptors, reports an
improvement on performance that allows a CBIR system to output more refined
results.

In a nutshell, the use of the TF-IDF score gives a boost in terms of quality of the results
being retrieved while still maintaining a reasonable resource consumption.

Chapter 7

Further Work

Given the nature of the problem being addressed here and the way it can be tackled
there could be countless directions in which image retrieval can turn. Based on the
experience of this work and the structures that have been employed here, there are a
couple interesting issues that can be addresed in future investigations.

• In a general scope, one must highlight the fact that the nature of the data is
changing between the stages of the overall image extraction and retrieval. This
means that the original essence of the data is being reinterpreted in a different
way every time and bit by bit, fractions of the data structures are being lost. The
idea would be to think of methods that are more data driven instead of having
this kind of black-box behaviour.

• Starting at the clustering of the SIFT descriptors, they first are a concatenation
of 8 bin histograms but then when being parsed against the codebook, this notion
of gradient histograms is being lost (since the clustering stage just considers it as
a 128 dimentional array or a point in a 128 dimentional space). One interesting
thing that could be done is to try a similar clustering procedure that operates
on the gradients of every SIFT descriptor and then build a catalog based on the
clustered gradient histograms overall the image.

• Sticking to the idea that images can be treated as words, it would be interesting
to introduce a more text-driven concept of distance. Until now, all the image
descriptors are being compared against each other using metric distances such as
Euclidean, L1, JSD, etc. These image descriptors can be adapted to better reflect
the structure of a word or in this case a term and that way, a Levenshtein distance
can be calculated.

37

Appendix A

Definitions and other results

A.1 Mean Average Precision (mAP)

The mAP is one of the most widely accepted metrics to measure the quality of the results
given by an information retrieval system. Average precision (AP) basically considers not
only the amount of correct results or true positives but also takes into account how high
they rank. To have an overall impression of how a system is performing, several test
queries have to be conducted in order to get an average precision for each try. Then,
the mean of all of the average precision results is calculated and that number is going
to reflect the mAP of the system.

To calculate the AP for a query, it is necesary to calculate two metrics at first: precision
and recall. Precision is going to show the portion of the retrieved data (images in this
case) that is actually relevant to the query. Recall refers to the portion of the relevant
data that was retrieved. These definitions might seem confusing but Equation A.1 and
Equation A.2 show both precision and recall in a more concrete way. It becomes evident
that both metrics are rather similar but they refer to very different concepts.

Precision =
TruePositives

TruePositives+ FalsePositives
(A.1)

Recall =
TruePositives

TruePositives+ FalseNegatives
(A.2)

In terms of images in a CBIR system, one can express precision and recall as follows:

Precision =
relevantImages ∩ retrievedImages

retrievedImages
(A.3)

Recall =
relevantImages ∩ retrievedImages

relevantImages
(A.4)

Finally, AP can be expressed as Equation A.5

∑n
i=1 Precision(i)×Recall(i)

of relevant Images
(A.5)

39

Appendix A. Appendix Title Here 40

A.2 Distance Measure Comparison

Mean average precision calculated on the Holiday dataset with 1k, 2k and 5k image
descriptors using SIFT. Using only local invariant features to describe an image, the
Manhattan distance shows stability and better performance than the other distance
measures in order to determine a nearest neighbor.

1K 2K 5K
Manhattan 0.510884368086 0.497081527177 0.517297397186
Euclidean 0.489388177781 0.435519559112 0.337281821016
JSD 0.454907234219 0.402402774342 0.372502580653
χ2 0.476934076966 0.438126018862 0.406113328638

Table A.1: Comparison of different dissimilarity measures in a high dimensional space
using mAP.

Bibliography

[1] Devin Coldewey. Facebook hits 10.000.000.000 photos good lord. Blog entry in
CrunchGear, October 2008. URL "http://www.crunchgear.com/2008/10/15/
facebook-hits-10000000000-photos-good-lord/".

[2] Photobucket Staff. Fun stats. Blog entry in the Photobucket blog, March 2005.
URL http://blog.photobucket.com/blog/2005/03/fun_statistics.html.

[3] Heather Champ. ”4,000,000,000”. Blog entry in the Flickr blog, October 2009.
URL http://blog.flickr.net/en/2009/10/12/4000000000/.

[4] Erick Schonfeld. Who has the most photos of them all? hint: It is not facebook. Blog
entry in TechCrunch, April 2009. URI: http://techcrunch.com/2009/04/07/who-
has-the-most-photos-of-them-all-hint-it-is-not-facebook/.

[5] Andrew Moore. An introductory tutorial on kd-trees. Technical Report Technical
Report No. 209, Computer Laboratory, University of Cambridge, Pittsburgh, PA,
1991.

[6] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. In CVPR ’97: Proceedings of the
1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), page
1000, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7822-4.

[7] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In ECCV ’08: Proceedings of the
10th European Conference on Computer Vision, pages 304–317, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-88681-5. doi: http://dx.doi.org/10.1007/
978-3-540-88682-2 24.

[8] Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier,
Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, and Hartmut Neven. Tour
the world: building a web-scale landmark recognition engine. In Proceedings of
International Conference on Computer Vision and Pattern Recognition, Miami,
Florida, U.S.A, June, 2009. doi: http://doi.acm.org/10.1145/1291233.1291448.

[9] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary
tree. In CVPR ’06: Proceedings of the 2006 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 2161–2168, Wash-
ington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2597-0. doi:
http://dx.doi.org/10.1109/CVPR.2006.264.

[10] Ondřej Chum, James Philbin, Michael Isard, and Andrew Zisserman. Scalable near
identical image and shot detection. In CIVR ’07: Proceedings of the 6th ACM

41

"http://www.crunchgear.com/2008/10/15/facebook-hits-10000000000-photos-good-lord/"
"http://www.crunchgear.com/2008/10/15/facebook-hits-10000000000-photos-good-lord/"
http://blog.photobucket.com/blog/2005/03/fun_statistics.html
http://blog.flickr.net/en/2009/10/12/4000000000/

Bibliography 42

international conference on Image and video retrieval, pages 549–556, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-733-9. doi: http://doi.acm.org/10.1145/
1282280.1282359.

[11] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with
large vocabularies and fast spatial matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

[12] Till Quack, Bastian Leibe, and Luc Van Gool. World-scale mining of objects and
events from community photo collections. In CIVR ’08: Proceedings of the 2008
international conference on Content-based image and video retrieval, pages 47–56,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-070-8. doi: http://doi.acm.
org/10.1145/1386352.1386363.

[13] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In Proceedings of the International Conference on Computer
Vision, volume 2, pages 1470–1477, oct 2003. URL http://www.robots.ox.ac.
uk/~vgg.

[14] Thomas Deselaers. Features for image retrieval. Master’s thesis, Rheinisch-
Westfalische Technische Hochschule Aachen, December 2003.

[15] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91, November 2004.

[16] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Comput. Vis. Image Underst., 110(3):346–359, 2008. ISSN 1077-
3142. doi: http://dx.doi.org/10.1016/j.cviu.2007.09.014.

[17] G. J. Burghouts and J. M. Geusebroek. Performance evaluation of local colour in-
variants. Computer Vision and Image Understanding, 113:48–62, 2009. URL http:
//www.science.uva.nl/research/publications/2009/BurghoutsCVIU2009.

[18] Jan Puzicha, Joachim M. Buhmann, Yossi Rubner, and Carlo Tomasi. Empirical
evaluation of dissimilarity measures for color and texture. In ICCV ’99: Proceed-
ings of the International Conference on Computer Vision-Volume 2, page 1165,
Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0164-8.

[19] Eric Brasseur. Gamma error in picture scaling. Unpublished technical report about
the bad implementation of scaling algorithms, 2010. URL http://www.4p8.com/
eric.brasseur/gamma.html.

[20] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo
from maximally stable extremal regions. Image and Vision Computing, 22
(10):761 – 767, 2004. ISSN 0262-8856. doi: DOI:10.1016/j.imavis.2004.02.006.
URL http://www.sciencedirect.com/science/article/B6V09-4CPM632-1/2/
7e4b5f8aa5a4d6df0781ecf74dfff3c1. British Machine Vision Computing 2002.

[21] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest point detec-
tor. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen, editors,
ECCV (1), volume 2350 of Lecture Notes in Computer Science, pages 128–142.
Springer, 2002. ISBN 3-540-43745-2. URL http://dblp.uni-trier.de/db/conf/
eccv/eccv2002-1.html#MikolajczykS02.

http://www.robots.ox.ac.uk/~vgg
http://www.robots.ox.ac.uk/~vgg
http://www.science.uva.nl/research/publications/2009/BurghoutsCVIU2009
http://www.science.uva.nl/research/publications/2009/BurghoutsCVIU2009
http://www.4p8.com/eric.brasseur/gamma.html
http://www.4p8.com/eric.brasseur/gamma.html
http://www.sciencedirect.com/science/article/B6V09-4CPM632-1/2/7e4b5f8aa5a4d6df0781ecf74dfff3c1
http://www.sciencedirect.com/science/article/B6V09-4CPM632-1/2/7e4b5f8aa5a4d6df0781ecf74dfff3c1
http://dblp.uni-trier.de/db/conf/eccv/eccv2002-1.html#MikolajczykS02
http://dblp.uni-trier.de/db/conf/eccv/eccv2002-1.html#MikolajczykS02

Bibliography 43

[22] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, Cambridge, UK, 2008. ISBN
978-0-521-86571-5.

[23] Nivio Ziviani, Edleno Silva de Moura, Gonzalo Navarro, and Ricardo Baeza-Yates.
Compression: A key for next-generation text retrieval systems. Computer, 33:37–44,
2000. ISSN 0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/2.881693.

[24] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files versus
signature files for text indexing. ACM Trans. Database Syst., 23(4):453–490, 1998.
ISSN 0362-5915. doi: http://doi.acm.org/10.1145/296854.277632.

[25] K. Pearson. On lines and planes of closest fit to systems of points in space. Philo-
sophical Magazine, 2(6):559–572, 1901.

[26] Lindsay I. Smith. A tutorial on principal component analysis. Tutorial, 2002. URL
http://kybele.psych.cornell.edu/~{}edelman/Psych-465-Spring-2003/
PCA-tutorial.pdf.

[27] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and
Cordelia Schmid. Evaluation of gist descriptors for web-scale image search. In
CIVR ’09: Proceeding of the ACM International Conference on Image and Video
Retrieval, pages 1–8, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-480-5.
doi: http://doi.acm.org/10.1145/1646396.1646421.

[28] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-
means problem is np-hard. In WALCOM ’09: Proceedings of the 3rd Interna-
tional Workshop on Algorithms and Computation, pages 274–285, Berlin, Heidel-
berg, 2009. Springer-Verlag. ISBN 978-3-642-00201-4. doi: http://dx.doi.org/10.
1007/978-3-642-00202-1 24.

[29] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis
and implementation. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):881–892, 2002.
ISSN 0162-8828. doi: http://dx.doi.org/10.1109/TPAMI.2002.1017616.

[30] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seed-
ing. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics. ISBN 978-0-898716-24-5.

http://kybele.psych.cornell.edu/~{}edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
http://kybele.psych.cornell.edu/~{}edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.1.1 State of the Art of Image Retrieval
	1.1.2 Keeping the Balance: Scalability vs. Reliability

	1.2 Motivation for using TF-IDF and Patch-Based Approaches

	2 Background Theory
	2.1 Image Features
	2.2 Local Features
	2.3 Invariant Features
	2.4 Distance Measures
	2.5 Theory and Algorithms
	2.5.1 Comparison with Text Retrieval Methods
	2.5.2 Inverted File
	2.5.3 Term Frequency - Inverse Document Frequency
	2.5.4 Principal Component Analysis

	2.6 Previous work

	3 Materials and Methods
	3.1 Dataset: INRIA's Holiday data set
	3.2 MoViMoS
	3.3 Baseline Establishment

	4 Results
	4.1 Baseline
	4.2 Optimizing the TF-IDF Measure
	4.3 Getting the Best of the Two Worlds

	5 Discussion
	5.1 Baseline
	5.2 Optimizing TF-IDF
	5.3 Combining Analysis

	6 Conclusions
	7 Further Work
	A Definitions and other results
	A.1 Mean Average Precision (mAP)
	A.2 Distance Measure Comparison

	Bibliography

