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Kurzfassung

Mit der steigenden Bedeutung von digitalem Video wächst auch das Bedürfnis,
die gröÿer werdenden Videoarchive komfortabel durchsuchen und verwalten zu
können. Ein Ansatz, der viel Beachtung erfährt, ist der Bereich des Content-
based Video Retrieval. Bei diesen Systemen geht es darum, den Nutzern einen
Zugri� abseits von benutzerde�nierten Schlüsselwörtern zu bieten und stattdessen
den wirklichen Inhalt des Videos als Grundlage für die Navigation zu nutzen. Sie
erkennen visuelle Eigenschaften wie Farbe und Bewegung, und setzen diese in
Zusammenhang mit dem semantischen Kontext des Videos.

Nicht nur im Bereich von Online-Videoportalen fügen die Ersteller oder Vertreiber
von Videomaterial oft nachträglich Bilder mit Text-Information (Nicht-Szenen-
bilder) ein, um den Ort, das Datum oder die Thematik ihrer Videos zu propagieren.
Traditionelle Content-based Video Retrieval Systeme nutzen diese wertvolle In-
formation jedoch in der Regel nicht.

Diese Arbeit beschreibt eine Ergänzung eines solchen Systems, welche darauf
abzielt, Nicht-Szenenbilder zu erkennen, um den darin enthaltenen Text zu ex-
trahieren. Dieser Nicht-Szenen Text wird durch einen Schlüsselwortabgleich auf
verwertbare Information hin untersucht, die dann für die weitere Verwendung im
System zur Verfügung steht.

Abstract

Digital video has received a massive boom over the past years, and the growing
video archives make it necessary to develop alternatives to the traditional text
search based on keywords. Content-based video retrieval aims at using the visual
content of a video instead of focusing on user-generated metadata. To achieve
this, these systems learn the interrelationships between low-level visual features
like color or motion and the semantic context of the video.

Videos published on online video portals often contain non-scene images added
by the creator or publisher of the video. The text found in these images usually
contains information about the source, the date or the topic of the video. Tra-
ditional content-based video retrieval systems do not make a di�erence at this
point, so this valuable information remains unused.

This thesis describes a modi�cation of a content-based video retrieval system,
which strives to detect these non-scene images and to extract the contained text.
This non-scene text is then interpreted using a keyword spotting mechanism, and
the text information obtained is used in the further processing of the video.
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Chapter 1

Introduction

1.1 Digital Videos

During the last few years there has been a signi�cant growth in the use of digital
videos. Today, more people than ever before use digital videos to spread infor-
mation, state their opinions, or even share private moments of their lives with
others.

Video portals like YouTube1 or Dailymotion2 play an important role in this recent
development, as they deliver an easily accessible and free-of-charge way for users
world-wide to store and share their digital videos. With the rapid spread of
broadband Internet access their popularity has increased enormously, resulting
in strongly growing video databases and a massive raise of video streaming tra�c
over the last few years. According to a study released by Ellacoya Networks in
2007 [9], the market leader for streaming video, YouTube, is responsible for nearly
10 % of all tra�c on the Internet.

YouTube currently hosts about 72,500,000 videos with approximately 200.000
new videos a day [28]. With the size of the video databases growing, the need
for e�ective searching and browsing techniques also gains even more importance.
Most video portals today allow the visitors to browse and search their video
databases using tags and other user-generated metadata, thus relying on manual
annotation of the videos. This approach needs a great amount of labor, and is
subjective and in�exible.

1www.youtube.com
2www.dailymotion.com
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Figure 1.1: TubeTagger learns the interrelationships between the visual features
and the semantic concept "sailing" by downloading a set of videos and training
the statistical models using the extracted features.

1.2 Content-based Video Retrieval

A rather new way to access large video databases are content-based video re-
trieval systems. These system focus on using the actual visual content of videos
for annotation and querying purposes, instead of relying on tags and keywords
provided by users. They allow the users to perform search tasks based on visual
similarities or descriptions of the visual content of a video. Therefore, the content
of a video is extracted and represented in the form of visual features, which are
used for indexing the videos. Some examples for visual features that are used in
content-based video retrieval include color, texture and motion.

Many projects have emerged in this �eld, for example the Virage Video engine
[15] and CueVideo [19] among the �rst ones. A newer example for a video re-
trieval system that provides a content-based access is InViRe, a project currently
conducted by the German Research Center for Arti�cial Intelligence(DFKI)3. It
features a special tagging system, TubeTagger, where the focus of this thesis lies.

Content-based video retrieval received a massive raise in attention over the last
years, particularly because of the massive growth of the video databases. Since
2003, the annual video retrieval contest TRECVID4 is held, which aims at eval-
uating and promoting the progress made in this �eld of research.

3http://www.dfki.de/web/forschung/iupr/projekte/
4http://www-nlpir.nist.gov/projects/trecvid/
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Figure 1.2: The tagging system TubeTagger in detail. Several features are ex-
tracted from a set of keyframes, which are used to train the statistical models.
A new video is tagged by classifying its features and combining the results to a
single score [26].

1.3 TubeTagger - a Tagging System for Video Re-

trieval

TubeTagger is a tagging system which works as a high-level semantic concept de-
tection [25]. It uses several visual features extracted from a set of representative
keyframes, namely color, texture, motion and visual words. During a training,
the tagging system learns the interrelationships between these low-level visual
features and the semantic contexts of the corresponding training videos. A suit-
able training set can be obtained by automatically downloading videos from a
video portal like YouTube, whereas the tags provided by the users who uploaded
the videos are used for annotation [26], see Figure 1.1.

A new video is being tagged by extracting the same features from a set of
keyframes, which are then classi�ed using the previously trained statistical mod-
els. For each feature a score is created, which are then combined to a single score
for the video (see Figure 1.2). This score corresponds to the posterior P (T |X)
of the video X for each tag T , which is the probability that the video X belongs
to a category T .

For each tag T a score is created. If a single tag is desired, the one with the
highest score is chosen. This tag can then be used for di�erent tasks, for example
to support the traditional text search or to assist the user with tagging the video.
Another possible application is the automatic tagging of the videos in a database.

1.4 Using Text Information for Tagging

So far, all extracted keyframes are used in the same manner. This means that
TubeTagger does not make any di�erence between scene images (the "real" video
data, captured with a camera) and images added subsequently by the user who
published the video, which are referred to as "non-scene images" in the following.
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(a) scene image (b) non-scene image, contain-
ing the correct tag within the
text

Figure 1.3: Sample keyframes extracted from a video of the category "cats". So
far both keyframes are used in the same manner, the textual information con-
tained in the non-scene image is not used. The goal is to extract this information
and use it to improve the tagging of the video.

These non-scene images often contain some textual information about the origin
or theme of the video (as seen in Fig. 1.3b), but this valuable information is
currently unused. Another point is that these keyframes could even impair the
results of the tagging, because their visual features are not related to the semantic
context of the video.

In conclusion, two ways are proposed to improve the tagging system TubeTagger.
The �rst one is to extract the textual information from the non-scene images,
interpret it and take the results into account when it comes to create a score
for a video. The second one is to withhold the non-scene images from both the
training and classi�cation process, so that they do not a�ect the tagging in a
negative fashion.

Both issues can be addressed by detecting the keyframes containing non-scene
text and processing them using a text extraction system to use this additional
source of information.
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Chapter 2

Method

2.1 Overview

In this thesis, a modi�cation of the tagging system TubeTagger is proposed, con-
sisting of two additional modules: a keyframe classi�cation module to classify
incoming keyframes, and a text extraction module for the extraction and inter-
pretation of non-scene text (Fig. 2.1).

The frame classi�cation module precedes the original tagging system. Each
keyframe extracted from a video passes this module and is classi�ed, either as
a non-scene image or scene image. A keyframe classi�ed as non-scene image is
passed to the text extraction module, whereas any keyframe classi�ed as scene
image is forwarded to the tagging system and processed as usual.

The text extraction module extracts the text from the detected non-scene images
and searches it for any useful information. This can be achieved by keyword
spotting, which means that the extracted text is compared with the words in a
dictionary of prede�ned tags. Finally, the text extraction module creates a score
based on the results. This score is passed to the tagging system, which then
combines it with the scores obtained from the other frames and creates a �nal
vote for the video.

At lot of work has been done for extracting text from video images during the
last years [7, 12, 13, 24, 27], but these methods aim at extracting text especially
from scene images. In contrast, the method proposed here speci�cally aims at
the user-added textual information in non-scene images.
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Figure 2.1: The proposed modi�cation of the tagging system TubeTagger. The
detected non-scene images are passed to the text extraction module, the scene
images are processed as before. Finally, the scores from the text extraction
module and TubeTagger are combined to a single score.

2.2 Detecting Non-Scene Images

The task of the keyframe classi�cation module is to separate non-scene images
from scene images. It consists of a classi�er, which is trained in a supervised
manner using a set of manually annotated keyframes. The annotation process
and the data used are described in Section 3.1.

The performance of a classi�er strongly depends on the features used for clas-
si�cation. Based on observations made on a small set of sample keyframes and
some theoretical considerations, it was decided to use three kinds of visual fea-
tures, which seem to be suited for separating non-scene images from scene images.
Two of them, namely color histograms and Tamura texture features, have already
been successfully used in TubeTagger. The third feature are gradient histograms,
which are currently not utilized in the tagging process.

Also, two di�erent types of classi�ers are taken into consideration: a nearest-
neighbor classi�er and a classi�er based on a simple thresholding over the entropy
of the feature histograms. These two classi�ers are tested together with the three
di�erent features mentioned above in a series of experiments, and the combination
which provides the best results is used for the keyframe classi�cation module.

In the following sections both the features and classi�ers are introduced in more
detail.
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(a) (b) (c) (d) (e) (f)

Figure 2.2: Examples for the �rst three Tamura features: high coarseness(a),
low coarseness(b), high contrast(c), low contrast(d), high directionality(e), low
directionality(f) [14, 8].

2.2.1 Feature Selection

Tamura Features

Tamura features [23] are a statistical texture representation, designed in accor-
dance to the human perception of texture. They consist of six features, including
coarseness, contrast, directionality, linelikeness, regularity, and roughness. How-
ever, experiments have shown that especially the �rst three features are impor-
tant, thus they have been used in several image-retrieval systems like QBIC [10]
and are used here as well. To obtain a histogram describing the texture, these
three features are computed as follows [8]:

Coarseness
The coarseness is a measurement for the size of the texture elements in an image
(see Fig. 2.2). The calculation takes several steps: First, for every point (x, y)
the average Ak(x, y) over a 2k × 2k neighbourhood is computed:

Ak(x, y) =
1

22k

x+2k−1−1∑
i=x−2k−1

x+2k−1−1∑
j=x−2k−1

I(i, j)

where I(i, j) is the image intensity at the point (i, j).

Then for every point (x, y) the di�erences between the non-overlapping aver-
ages on opposite sides of the point in both horizontal and vertical direction are
calculated:

Ek,h(x, y) = |Ak(x+ 2k−1, y)− Ak(x− 2k−1, y)|

Ek,v(x, y) = |Ak(x, y + 2k−1)− Ak(x, y − 2k−1)|
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For each point (x, y),

S(x, y) = argmax
k∈{1..5}

max(Ek,v(x, y), Ek,h(x, y))

is computed, which results in the best size

Sopt(x, y) = 2S

for each point (x, y).

Contrast
In an image, the contrast measures the dynamic range of grey levels and the
polarisation of the distribution of black and white (see Fig. 2.2). The dynamic
range is measured using the standard deviation of the grey levels, the polarisation
using the fourth standardized moment, the so-called kurtosis:

Fcontrast = σ

α
1/4
4

where α4 = µ4

σ4

with σ being the standard deviation and µ4 being the fourth moment about
the mean of the grey values. To obtain pixel-per-pixel values, the contrast is
computed over a 13× 13 neighbourhood for each point (x, y).

Directionality
The directionality is a measurement for the degree of orientation in the texture
(see Fig. 2.2). To compute this feature, edges are detected in the image by a
convolution with the Sobel operators Gh and Gv :

[∆h(x, y),∆v(x, y)] = [(Gh ∗ I)(x, y), (Gv ∗ I)(x, y)]

where

Gh =

 1 0 −1
2 0 −2
1 0 −1

 and Gv =

 1 2 1
0 0 0
−1 −2 −1


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(a) scene image (b) Tamura histogram

(c) non-scene image (d) Tamura histogram

Figure 2.3: Two sample keyframes with their Tamura features histograms.

Then the angle of the resulting gradient vector is computed for each point (x, y):

θ(x, y) = arctan

(
∆v(x, y)

∆h(x, y)

)
+
π

2

Now that for each pixel (x, y) a total of three values is available (Sopt(x, y),
Fcontrast(x, y) and θ(x, y)), a three-channel image can be constructed (the so called
tamura image) and a histogram is created:

htamura(s, c, d) = N · p(Sopt = s, Fcontrast = c, θ = d)

where N is the total number of pixels in the image. The Tamura features his-
tograms used in this thesis are computed using the FIRE Image Retrieval Engine1.

Taking into consideration that most non-scene images only consist of a plain
unicolor background with some text in it, these three features seem to be well-
suited for the task of discriminating the two classes. The large unicolor areas in a
non-scene image result in a very high value for the coarseness Sopt(x, y). For the
same reason, the contrast Fcontrast(x, y) and the angle θ(x, y) are zero for most
pixels, with the text areas being the only exceptions. This di�erence is re�ected
in the Tamura feature histograms (see Fig. 2.3).

1http://www-i6.informatik.rwth-aachen.de/∼deselaers/�re.html

11



(a) scene image (b) color histogram

(c) non-scene image (d) color histogram

Figure 2.4: Two sample keyframes with their color histograms. The histogram of
the non-scene image is much more peaked than the histogram of the scene image.

Color Histogram

A color histogram is an e�ective and simple representation of the color content
of an image. Every pixel in an image can be described by the three components
in its color space (in this thesis red, green and blue components in RGB space
are used). The color histogram denotes the joint distribution of the intensities of
these three color channels and is de�ned as

hRGB(r, g, b) = N · p(R = r,G = g,B = b)

with R, G and B being the three color channels and N the total number of pixels
in the image. Again, the FIRE Image Retrieval Engine is used to create these
histograms.

Color histograms seem to be promising for discriminating non-scene images from
scene images, because most of the non-scene images only contain very few di�erent
colors, with one color for the background being dominant. This can clearly be
recognised in a color histogram (Fig. 2.4d), where one distinctive peak overtops
the others by far. Scene images on the other hand tend to have a much wider
range of colors, their color histograms are less peaked than the color histograms
of non-scene images (Fig. 2.4b).

For the experiments in Section 3.2, color histograms with two di�erent bin sizes
are used. A smaller histogram consisting of a total of 83 = 512 bins and a much
larger one consisting of 243 = 13824 bins.
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Gradient Histogram

The gradient of an image measures the local change of the intensities, both in their
magnitude and direction. Whereas the direction is used for the Tamura feature
"directionality", this time the magnitude is computed for each pixel (x, y). Again,
a convolution is performed, but this time two simpler masks are used:

Gh =

 0 0 0
−1 0 1
0 0 0

 and Gv =

 0 1 0
0 0 0
0 −1 0


Now we compute the magnitude g for each point (x, y)

g(x, y) :=
√

(∆h(x, y))2 + (∆v(x, y))2

and create a histogram as a feature. In this thesis, a histogram with 256 bins is
used.

The di�erence between non-scene images and scene images can be seen in the way
the strength of the intensity changes over the image, which is measured by the
magnitude of the gradient. Given that a non-scene image consists of few di�erent
intensities with the intensity of the background color being very dominant, most
of the gradient image shows a magnitude of zero. Only at the transitions to the
characters a change of the intensity is observable (Fig. 2.5e). In contrast, a scene
image features changes in the intensity distributed over the whole image (Fig.
2.5b). This results in a smooth descent of the histogram (Fig. 2.5c), in contrast
to the abrupt drop in the histogram of a non-scene image (Fig. 2.5f).
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(a) scene image (b) gradient image (c) gradient histogram

(d) non-scene image (e) gradient image (f) gradient histogram

Figure 2.5: Gradient histogram examples. The scene image (a) shows intensity
changes distributed over the whole image (b), whereas in the non-scene image (d)
the changes are concentrated in the region around the text (e). The histograms
(c,f) di�er accordingly.

2.2.2 Classi�er

Nearest Neighbor

The nearest neighbor (NN) rule is a commonly used method in pattern classi�-
cation [6], providing satisfying results in many cases. Its setup is quite simple:
By comparing a querying sample to a set of training samples (called prototypes)
using a distance measurement, the training sample with the smallest distance -
the so-called nearest neighbor - is found. It is then assumed that the test sample
is of the same class as the found prototype.

When implemented in a naive way, NN has a time complexity of O(dn), as every
sample has to be compared in d dimension to all n prototypes used for training. To
bypass this, approximate nearest neighbor search can be used to reduce the time
complexity at negligible loss in terms of precision/error rates. The approximate
nearest neighbor method used here makes use of kd-trees - a generalization of the
binary search tree for the use in higher dimensions introduced by Bentley [2] -
and has been successfully applied to visual matching before [18].

The kd-tree works as a space-partitioning data structure, organizing points in a k-
dimensional space by hierarchical subdivision using splitting hyperplanes parallel
to the coordinate axes. Each node of the tree is associated with a k-dimensional
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rectangle and the points that lie within, with the root being the bounding rect-
angle and thus containing all points stored in the tree.

The construction of a kd-tree starts with the �rst cell, the root node. It is split
into two parts using a hyperplane parallel to one of the coordinate axes and
passing through the cell, with each part becoming a new node (child) of the tree.
Every new node is being split as described above, until the number of points
associated with a new node falls below a certain threshold (e.g. one). Such a
node becomes a leaf and is not partitioned further.

Nearest neighbor search on a kd-tree [11] is performed by a simple recursive
algorithm. The tree is searched depth-�rst, deciding at each node on which side
of the corresponding hyperplane the query point lies. When reaching a leaf, the
distances from the query point to each of the points in the leaf's cell are calculated
and the smallest distance is saved. Then each of the previously visited parent
nodes is examined to determine if it is possible that the respective other child
contains a point closer to the query point than the point found so far. When
returning from the root, the closest point found is returned.

An approximate nearest neighbour search can be performed by introducing an
error bound ε and allowing the algorithm to only visit a further child if its distance
is lower than the currently smallest distance found divided by (1 + ε) [1].

Entropy thresholding

For the second classi�cation method the well-known entropy measure is used.
The entropy was �rst introduced by Shannon as a statistical feature measuring
the amount of information of a system. For a discrete distribution over events
X = x1, ..., xn it is computed as follows:

H(X) =
n∑
i=1

P (xi) · log P (xi)

where P (xi) is the probability of the i-th event. In case of a histogram referring
to a probabilistic distribution P (xi) it is the normalized value in the i-th bin of
the histogram.

A sharply peaked distribution results in a very low entropy value, whereas a
distribution spread evenly over a large amount of bins has a much higher entropy.
As seen in Section 2.2.1, the feature histograms of non-scene images tend to be
much more peaked than the feature histograms of scene images, thus it is expected
that their entropy values also di�er by a large amount.
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Thus, the classi�cation problem is reduced to the problem of �nding a threshold
which seperates the two classes by the entropy values H(X) of their feature
histograms X:

class(X) =

{
scene image if H(X) ≥ T
non-scene image if H(X) < T

The threshold T is proposed to separate the two classes such that the di�erence
between the error rates of non-scene images and scene images is minimized over
a training set, thus obtaining an equal error rate for both classes:

T = argmin
t
| etrain,scene(t)− etrain,non−scene(t) |

where escene,text is the quotient of wrongly classi�ed scene images to the total
number of non-scene images of the training set, and etrain,non−scene is the same
for non-scene images.
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Figure 2.6: The text extraction module. Incoming keyframes are �rst binarized
by the two additional binarization methods, then forwarded to the OCR system
OCRopus. The extracted text is interpreted and a score is produced for the use
in the tagging process.

2.3 Text Extraction

After the keyframes have been classi�ed, the detected non-scene images are for-
warded to the text extraction module. This consists of three parts: the Optical
Character Recognition (OCR) system which extracts the text from the images,
an additional binarization module, and an interpretation module which searches
the found text for usable information, in our case video tags.

2.3.1 OCRopus

The OCR system used to extract the text is OCRopus2. OCRopus is an open
source OCR project, mainly being developed for book scanning applications like
the Google Book Search3 and for desktop and o�ce use. It combines several sub-
systems like preprocessing, layout analysis and statistical language modeling in a
highly modular design [5]. The character recognition engine used by OCRropus
is Tesseract4.

OCRopus can be used in several ways, including the Lua scripting language5 and
a command-line tool. For the experiments in this thesis, the command-line tool
is used.

2http://code.google.com/p/ocropus/
3http://books.google.com/
4http://code.google.com/p/tesseract-ocr/
5http://www.lua.org/
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2.3.2 Preprocessing

Of all possible preprocessing steps the binarization - which means converting
an image into a binary (black/white) representation - plays a key role when it
comes to character recognition in color images. Given the fact that most non-
scene images only feature very few di�erent colors, the binarization of non-scene
images is performed on the corresponding grey-scale images. But because many
di�erent character sizes can be found in non-scene images, it is necessary to take
a closer look at binarization methods to achieve good recognition results.

Sauvola's Method

OCRopus features a local thresholding method by Sauvola[20] as its built-in
binarization method. Thereby, "local" thresholding means that the threshold
separating the background from the foreground is computed separately for each
pixel. For Sauvola's method it is computed by

T (x, y) = µ(x, y) ·
[
1 + k ·

(
σ(x, y)

R
− 1

)]
where µ(x, y) is the mean and σ(x, y) the standard deviation of pixel values in
a w × w neighbourhood around the pixel (x, y). R is the maximum value of the
standard deviation and thus set to 128 for a grey-scale document, and k is a
parameter set a priori, usually to a value between 0.2 to 0.5.

OCRopus uses a fast implementation of this method that utilizes integral im-
ages to compute the local means and standard deviations. In comparison to the
original method introduced by Sauvola its running time is not dependent on the
window size w [22].

Sauvola's binarization method delivers good results in combination with docu-
ment images [21, 22], but often fails when applied to video keyframes. The reason
for this lies in the way the method calculates the threshold. In unicolor areas
where the standard derivation is 0, the threshold computes to

T (x, y) = µ(x, y) · (1− k) = µ(x, y)− k · µ(x, y)

so with k ∈ [0.2; 0.5] the threshold is always lower than the current intensity level.

That means that all unicolor areas are whitend, with the areas around the char-
acters (depending on the window size) being the only exception. Consequently,
this binarization method cannot be used solely for all keyframes, because many

18



(a) Original image (b) Binary image produced
by Sauvola's method

Figure 2.7: Sauvola's method whitens unicolor areas, thus its application is lim-
ited to images with a bright background color.

non-scene images feature a darker color for the background than used for the
text, which renders the method useless (see Fig.2.7).

To get a large proportion of the text extracted, another binarization technique
is needed. However, �rst experiments showed that it is very di�cult to �nd a
binarization method which suites all non-scene images, given their large spread
of di�erent character sizes and the artifacts resulting from the video compression.

To avoid this, two di�erent binarization techniques (one global and one local
method) are used in addition and are applied simultaneously to all non-scene
images, together with the built-in Sauvola method. So when it comes to character
recognition, up to three di�erently binarized images are available. Also, up to
three di�erent text outputs are available for the interpretation module, increasing
the chance of recognising a tag within the text of a non-scene image.

Otsu's Method

The �rst additional binarization technique used is Otsu's method [17], which tries
to �nd an optimal global threshold by minimizing the weighted sum of the within-
class variance from the foreground and background pixels and at the same time
maximizing the between-class scatter. The global threshold computes as follows
[21]:

Totsu = argmax
T∈{0..255}

P (T )(1− P (T ))(µf (T )− µb(T ))2

P (T )σ2
f (T ) + (1− P (T ))σ2

b (T )

where µf (T ) and µb(T ) are the means of the foreground and background region
for a certain threshold T , with their corresponding standard deviations σf (T )
and σb(T ).
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(a) Original image (b) Binarized by Otsu's
method

(c) Binarized by Otsu's
method with the modi�ed
threshold

Figure 2.8: The threshold found by Otsu's method is not optimal, resulting in
visible artifacts around the characters. A simple modi�cation that moves the
threshold towards the assumed background color eliminates these artifacts.

Otsu's method relies on an almost equal number of pixels in each of the two
classes to deliver good results [21], a fact that is not given in most of the non-
scene images. As to be seen in Figure 2.8b, the threshold found is not optimal,
resulting in visible artifacts around the characters. These compression artifacts
are a byproduct of the lossy compression of the video data and its low resolution.

To remove these artifacts and thus to improve the overall results, the threshold
found by Otsu's method is modi�ed as follows:

Tnew = Totsu −
C

|b− Totsu|

where Totsu is the threshold found by Otsu's method and C is a prede�ned pa-
rameter. b is set to the intensity level in the corners of the image, based on the
assumption that the background color of a non-scene image also applies to its
corners. So the threshold is being moved towards the assumed background color,
in relation to its di�erence from the old threshold and the parameter C. The
larger the di�erence between the background color and the found threshold is,
the more the threshold is adapted.

Several test runs have shown that this small modi�cation eliminates the artifacts
around the text region and therefore makes most of the non-scene text recogniz-
able by OCRopus, as shown in Figure 2.8c. For C, a value of 30 has been set
manually.
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(a) Original image (b) Binarized by Bernsen's
method

Figure 2.9: Example for a non-scene image binarized by Bernsen's method.

Bernsen's method

Bernsen's binarization [3] in contrast to Otsu's method is another local thresh-
olding method, where the threshold for each pixel is computed separately, accord-
ing to the mean of the minimum intesities Imin(x, y) and maximum intensities
Imin(x, y) in a w × w region around the pixel (x, y):

T (x, y) =
Imax(x, y) + Imin(x, y)

2

Additionally, if the contrast

C(x, y) = Imax(x, y)− Imin(x, y)

in the surrounding area of (x, y) falls below a certain threshold Cmin , the treshold
T (x, y) is overwritten by a global value Tglobal. Tglobal is either set a priori or can
be computed by a simple global thresholding method, like using the mean of the
highest and lowest intensity over the whole image.

For the non-scene images, a contrast limit Cmin = 30 and a window size w = 20
are used. An example can be seen in Figure 2.9.

2.3.3 Keyword Spotting

After the text is extracted from non-scene images, it is interpreted for the use
in the tagging system. Therefore, the results of OCRopus are compared to a
dictionary containing all possible tags for the videos ("keyword spotting").

The comparison is word-by-word, whereas the edit distance d(x, y) between a
candidate x and each word y in the dictionary is measured using the algorithm
of Levenshtein [16]. It equals the minimum number of deletions, insertions or
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substitutions of single characters necessary to transform one string into another.
To make matches robust to errors in character recognition, for example the small
letter "l" recognised as the number "1", a certain edit distance Dmax is allowed
for detecting matches:

match(x, y) =

{
true if d(x,y) < Dmax(y)
false if d(x,y) ≥ Dmax(y)

For the experiments, the following value for Dmax is used:

Dmax(y) = bwordlength(y)/4c

So the allowed edit distance grows by one every four characters of y, allowing
more errors the larger the tag is.

The result are the names and quantities of the tags found within the keyframes of
a video. To integrate this information with the results of the tagging system, for
each tag T and video X the corresponding probabilities Ptext(T |X) are created.
They are computed by putting the count of a tag T in relation to the total number
of tags found in the video:

Ptext(T |X) =

{
n/N if tag T was found n times in a total of N tags found
0 if tag T was not found

To create a �nal vote in combination with the results of TubeTagger, the �nal
score Pfinal(T |X) is set to

Pfinal(T |X) = Ptext(T |X) · 1 + (1−
∑
T

Ptext(T |X)) · Ptagging(T |X)

with Ptagging(T |X) being the vote of the tagging system. So if any tags have been
found in the keyframes of a video, the voting is according to these tags and not
according to the results of the tagging by visual features. This approach is chosen
because it is very likely that a video with the tag T included into a non-scene
image actually belongs to this category.
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Chapter 3

Experiments

3.1 Dataset

The foundation of the following experiments is a set of several thousand automat-
ically downloaded YouTube videos spread over 23 categories, namely: basketball,
beach, building, cats, concert, crash, dancing, desert, ei�eltower, explosion, golf,
helicopter, hiking, interview, race, riot, sailing, secondlife, soccer, swimming,
talkshow, tank and videoblog. From these videos, about 97,430 representative
keyframes have previously been extracted, using an adaptive clustering approach
[4].

Frame classi�er

For the classi�cation experiments, two sets containing 4538 and 4539 keyframes
have been chosen randomly. To be able to use them for training and test purposes
they have been annotated manually. To accelerate this process, a tool has been
developed which allows a quick manual detection and annotation of the non-scene
images (see Fig. 3.2).

The statistics of these two sets are the following:

set CL:A set CL:B both

non-scene images 114 118 232
scene images 4425 4420 8845
images total 4539 4538 9077

As can be seen, the percentage of non-scene images is quite low with about 2, 61%,
a fact that should be kept in mind when it comes to interpreting the results.
Another interesting observation during the annotation was that the percentage of
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Figure 3.1: A screenshot of the annotation tool.

non-scene images from the extracted keyframes varies depending of the category
of the video (see Fig.3.2). The most non-scene images were found in keyframes
of the category soccer, whereas in the category ei�eltower there are none at all.
Obviously, improvements through the use of textual information do not apply to
all categories equally.

Text Extraction

To test the text extraction module, the non-scene images of both sets CL:A and
CL:B have been merged and their ground truth notated where possible. Non-
scene images containing non-western fonts or overlapping characters due to sliding
e�ects were disposed. The resulting set is the following:

set OCR

non-scene images 171
ground truth 6656 characters

TubeTagger

Finally, for the practical tests with the whole tagging system, two sets each con-
taining of 1100 videos were used (50 per category, whereas the category building
was not included in these already existing sets). To be able to evaluate the results,
the test set contained the full ground truth.
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Figure 3.2: Breakdown of the 232 manually annotated non-scene images. They
are not distributed evenly over all 23 categories, instead some categories contain
much more non-scene images than others.

3.2 Experiments

3.2.1 Frame Classi�cation

The �rst series of experiments is used to determine the best combination of
classi�er and feature. Therefore both classi�ers - the nearest-neighbor and the
entropy thresholding method (for both see Section 2.2.2) - are tested with the
three proposed visual features in Section 2.2.1 .

Experiment 1 - NN Classi�cation, unbalanced:

In the �rst experiment, the approximate nearest-neighbor classi�cation is per-
formed on a kd-tree, using the previously introduced Tamura features, color his-
togram and gradient histogram. The two sets CL:A and CL:B are used in a 2-fold
cross-validation process, which means that every set is used once as the training
set to create the tree and once as the test set. The resulting errors are averaged.
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test error %
feature non-scene image scene image

Tamura features 34.23 0.43
color histogram 28.82 0.34

color histogram 243 25.43 0.28
gradient histogram 36.68 0.47

The �rst thing to be seen is that the error rates for non-scene images and scene
images di�er by a large amount. Taking into consideration that there are much
more scene images than non-scene images (the annotated samples showed a 38 to
1 ratio), this implies that a lot of scene images must have similar visual features
in comparison to the non-scene images we want to separate.

Besides this, the gradient histogram performs worst. The Tamura features per-
form a little better, but the best feature for this classi�er are the color histograms.
The larger color histogram even performs a little better than the smaller one, but
at the cost of a signi�cantly higher computational complexity.

Experiment 2 - NN Classi�cation, balanced:

The goal for the second experiment is to balance the error rates for non-scene
images and scene images. Therefore, a k-nearest-neighbor search is performed
with increasing values for k, whereas a sample is classi�ed as non-scene image
if at least one of the k nearest neighbors is a non-scene image. This procedure
corresponds to the introduction of a loss function and the adjustment of the costs
until an equal error rate is achieved. Again, the sets CL:A and CL:B are used.

feature k test error%

Tamura features 65 15.39
color histogram 100 9.19

color histogram 243 300 9.11
gradient histogram 20 7.25

An equal error rate was achieved with di�erent values for k, depending on the
feature used. This time the gradient histogram delivers the best result with an
error rate of 7.25%, whereas the Tamura features now take the last position. Both
color histograms have similar error rates.

26



Experiment 3 - Entropy Thresholding:

In the next experiment, the classi�er based on the entropy thresholding method is
used. Again, the two sets CL:A and CL:B participate in a 2-fold cross-validation.

feature training error % test error %

Tamura features 15.09 15.27
color histogram 7.41 6.89

color histogram 243 6.12 5.89
gradient histogram 10.94 10.78

Given the fact that the threshold is found by minimizing the di�erence between
the error rates for non-scene and scene images, the error rates do not diverge
as in the case of the one-nearest-neighbor approach, so no adjustment like in
Experiment 2 is needed to achieve an equal error rate.

The color histograms perform better than with the nearest-neighbor approach of
Experiment 2, but the results using the gradient histogram are worse. Again, the
Tamura features have the highest error rates with about 15% and therefore do
not meet the expectations.

Experiment 4 - Entropy Thresholding, modi�ed gradient histogram:

An in-depth analysis of the gradient histograms revealed that the main di�erence
between non-scene images and scene images lies within the �rst 50 to 70 bins. In
this experiment, the histogram is cut at speci�c bins to see if the results improve
when ignoring the higher bins. The classi�er and sets used are the same as in
Experiment 3.

cut at training error % test error %

no cut 10.94 10.78
50 8.55 8.17
25 6.96 6.74
10 7.22 7.28

Cutting the histogram improves the error rates, with the best result using a cut
after the 25. bin. At this point, the error rate went down by about 4 % in
comparison to the original histogram. Cutting the histogram further results in
an increasing error rate.
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(a) scene image (b) scene image

(c) scene image (d) non-scene image

Figure 3.3: Four examples of keyframes that are classi�ed wrong with all three
features.

So the best error rates could be achieved with the entropy thresholding used
on the large color histogram, with a test error of 5.89 %. But the calculation
and processing of such a large histogram is costly in terms of time and space
complexity, which is why either the small color histogram or the cut gradient
histogram should be used for the frame classi�cation module. Both their error
rates are only about 1 % higher than the error rates of the large color histogram.
Compared to NN classi�cation, the entropy thresholding method is preferable
because the achieved equal error rates are lower.

So in a practical test an error rate of approximately 7 % is expected, which
means that still a lot of scene images are classi�ed as non-scene images. Taking
a closer look at the wrong classi�ed samples reveals that many scene images
are misclassi�ed by all three features. As can be seen in Figure 3.3, many of
them have a lot in common with non-scene images. High contrast regions, large
unicolor areas and few di�erent colors are the main points based on which the
three features distinguish the scene images from the non-scene images. This is
why none of the three features is su�cient for the use with this kind of scene
images. Also, some non-scene images are classi�ed incorrectly. The non-scene
image in Figure 3.3d for example features a complex multicolor background, a
feature that is associated with scene images.

There are also some images that are misclassi�ed by one feature, but classi�ed
correctly with another. For example the scene image in Figure 3.4: it features
several di�erent colors, therefore it is classi�ed right if the color histogram is

28



Figure 3.4: Example a for non-scene image where one feature works but the
other does not. This scene image is classi�ed correctly by its color histogram,
but incorrectly by its gradient histogram.

used. On the other hand, it features a high contrast around the person, thus by
using the gradient histogram it is classi�ed as non-scene image.

3.2.2 Text Extraction

The next series of experiments is carried out to determine the detection rates of
the text extraction module. All components are explained in Section 2.3.

Experiment 5 - Text Extraction, simulation:

This experiment is a simulation of the keyword spotting method used for �nding
tags. Each keyframe of the OCR set is been binarized by the three binarization
methods stated before, then the text is extracted by OCRopus.

For each result the edit distance to the ground truth is calculated. To state that
in case of some non-scene images one binarization method might perform better
than another one, multiple binarization results are combined by choosing the
result with the smallest edit distance for each keyframe.

binarization by edit distance % of ground truth

Sauvola 3381 50.80
Bernsen 3290 49.43
Otsu 3502 52.63

Sauvola+Bernsen 2571 38.63
Sauvola+Otsu 2370 35.61
Bernsen+Otsu 2334 35.07

Sauvola+Bernsen+Otsu 2100 31.55

The three di�erent binarization methods perform almost equally if used sepa-
rately. Regarding the observed problems Sauvola's method has with a lot of the
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keyframes and the high error rates, it seems that the other binarization methods
also have problems with some keyframes. This means that none of the three
binarization methods alone is su�cient for this task.

Combining di�erent binarization methods decreases the edit distance, which
means that keyframes where one method fails are often better binarized by an-
other method. The overall improvement shows that the combination of di�erent
binarization methods is suitable for keyword spotting in non-scene images.

Experiment 6 - Text Extraction, keyword spotting

In the next experiment the keyword spotting with a small allowed edit distance is
performed (as described in Section 2.3.3), and the OCRopus results are compared
to a dictionary containing the 23 possible tags. Like in the simulation run, in case
of multiple binarization results the one with the lowest edit distance is chosen.
In this test set a maximum of 17 tags could be found.

type tags found correct recall precision

sauvola 9 9 52.94 100.00
bernsen 8 8 47.06 100.00
otsu 10 9 52.94 90.00

sauvola+bernsen 11 11 64.71 100.00
sauvola+otsu 13 12 70.59 92.23
bernsen+otsu 13 12 70.59 92.23

sauvola+bernsen+otsu 14 13 76.47 92.86

As expected and seen in the simulation, the combination of multiple binarization
results delivers a higher recall rate for the tags. A combination of three di�erent
binarization methods makes it possible to detect more than 75% of the tags
contained in the keyframes of the OCR set. Given a rather small allowed edit
distance, the precision is always greater or equal than 90%.

3.2.3 Modi�ed Tagging System

The experiments so far analyzed the two modules developed in this thesis -
keyframe classi�cation and text extraction - separately, to �nd an appropriate
classi�cation method and to evaluate the performance of the keyword spotting.

In the following experiments, the in�uence of these modules on the tagging sys-
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tem is tested as described before to get an impression of how well this method
works in practice. The keyframe classi�cation module uses the entropy thresh-
olding method as classi�er, together with the color histogram as features. This
combination delivers decent error rates with about 6-7% on the test set and is fast
in terms of computing time. The text extraction module uses all three binariza-
tion methods, and keyword spotting is performed on the dictionary containing
22 tags (the category building is disposed).

Experiment 7 - TubeTagger, with keyframe classi�cation module:

In this experiment, only the keyframe classi�cation module (KC) is active. In-
coming keyframes are classi�ed and only keyframes classi�ed as scene image are
processed by the tagging system. The training and test set each consisting of 1100
videos are used, the result is the mean average precision (MAP) of the tagging
system.

To compare the results, the same experiment is done without the keyframe clas-
si�cator being active.

feature combination w/o KC (MAP %) with KC (MAP %) ∆MAP%

color 23.2562 22.5729 -0.6833
texture 20.2136 19.7838 -0.4298

coloretexture 25.7652 24.5116 -1.2536
colortexturemotion-ef 27.7458 27.6787 -0.0671

The �ltering of these keyframes decreases the mean average precision of the tag-
ging system. The change is not radical, but still measurable. The main reason for
this lies in the ratio between non-scene images and scene images, in the sets CL:A
and CL:B it was about 1:38. To many scene images get sorted out compared to
non-scene images.
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Experiment 8 - TubeTagger, with text extraction module:

Now the results of the text extraction module are included in the tagging process.
All keyframes classi�ed as non-scene images are searched for tags. First, the scores
of the text extraction are compared to the scores of the tagging system, to get
an impression of how many videos are a�ected to which degree.

results when tagging by text # % of test set

correctly tagged (better tag) 24 2.18
correctly tagged (same tag) 15 1.36

correctly tagged 39 3.55

wrongly tagged (same tag) 4 0.36
wrongly tagged (worse tag) 1 0.09

wrongly tagged 5 0.45

videos tagged by OCR 44 4.00

The share of videos containing their tag in one of the non-scene images is quite
low, only 4% of the total number of videos. But more than 88 % of the found
tags contribute to the correct tagging of the video, and only one video is given a
worse tagging than by the tagging system.

The scores are now combined with the scores of the tagging system. Note that
all keyframes classi�ed as non-scene image are passed to the tagging system, in
addition to proceed them to the text extraction module. This is done to achieve
the best possible results (see Experiment 7).

As far as features are concerned, color, texture and motion are combined in an
early fusion.

feautre combination w/o OCR (MAP %) with OCR (MAP %) ∆MAP%

colortexturemotion-ef 27.7458 30.9553 3.2095

Using the found tags in the tagging process improves the mean average precision
by more than 3 %, an improvement similar to those achieved by using one addi-
tional visual feature for the tagging system. Considering the fact that only about
4 % of all videos are a�ected, this is a remarkable improvement.
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Chapter 4

Discussion

The experimental results have shown that non-scene images can be separated
from scene images with a decent error rate, using a simple classi�er based on
visual features. With color histograms or gradient histograms as features and
the entropy thresholding method as classi�er, an overall error rate of below 7 %
could be archieved. This means that about 93 % of all non-scene text images are
detected and forwarded to the text extraction module.

But given the 1:38 ratio of non-scene images to scene images observed during the
annotation, a lot of scene images are incorrectly classi�ed as non-scene images.
This has a minor e�ect on the results of the text extraction module, because in
scene images usually no character boxes are found by OCRopus and thus no text
is extracted. And in case that some wrong text is found, a limited edit distance to
the words in the dictionary is also needed for a match. It does produce additional
load for the text extraction module, but compared to the time TubeTagger needs
to tag a video it is negligible.

For the same reason, many scene images are disposed because they are mis-
classi�ed. Assuming that the ratio from the annotated keyframes applies to all
keyframes, from 1000 keyframes 974 would be scene images and 26 non-scene
images. Given a 7% error rate on both classes, 24 of 26 non-scene images would
be forwarded to the text extraction module and withhold from TubeTagger. But
due to the error, about 68 scene images would be disposed in addition. This
results in a decrease of the mean average precision.

The error rate of the keyframe classi�cation module can surely be lowered by using
more complex classi�ers, but the main problem lies within the features. Based
on these features, many scene images show similarities to non-scene images, like
few di�erent colors or large unicolor areas (see Figure 3.3). Therefore, more
appropriate features are needed to reach better detection rates. Assuming that
each scene image contributes as much information to the tagging system as a
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(a) original image (b) binarized by Bernsen

(c) binarized by Sauvola (d) binarized by Otsu

Figure 4.1: Some non-scene images are not binarized correctly with any of the
three methods. Especially if they feature complex, multicolor text.

non-scene images contributes false information, we would need a combination of
feature and classi�er with an equal error rate as low as the percentage of non-scene
text, which lies around 2-3%.

On the other hand, processing the detected non-scene text images to the text
extraction module shows good results. With the simple approach of comparing
the OCRopus results with all possible tags ("keyword spotting"), a signi�cant
improvement of the tagging system could be achieved, even if the percentage of
videos containing their tag in text form is quite low with about 4 %. But using
this information as proposed improves the mean average precision by 3%.

Some improvements of the text extraction module could be achieved by using
better binarization techniques. Against the original assumptions, the binariza-
tion on gray-scale images is not su�cient for all non-scene images. Especially
if the text in a non-scene images features di�erent colors (see Figure 4.1), the
binarization methods used in this thesis do not work. A color-based approach
could help to improve the results on these non-scene images.

Another way to improve the results would be to extend the dictionary. It actually
only contains the names of the 23 categories, but many videos contained other
words with a strong semantic relation to these categories. For example, many
sport videos contain the names of famous soccer players or other theme-related
words (see Figure 4.2). A much larger dictionary with semantic associations could
help here, as suggested by Zhuang et al. [29].
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(a) non-scene image re-
lated to basketball

(b) non-scene image re-
lated to soccer

Figure 4.2: Both non-scene images contain text with a strong semantic link to
their category. The shortcut "NBA" refers to the american basketball league,
whereas "Owen" is the name of a famous soccer player.

As a conclusion, it is therefore proposed to include the keyframe classi�cation and
the text extraction module in TubeTagger, only without removing the detected
non-scene text images from the tagging process unless better classi�cation rates
can be achieved. Therefore, a more appropriate combination of classi�er and
feature has to been found.
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