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Abstract

In this paper we present the application of probabilisitc finite state transducers to the
problem task of bibliographic meta-data extraction from research paper references. Although
finite state techniques have been utilized on various tasks of computational linguistics before
they have not been used for the recognition of bibliographic references yet. Especially the
involved simplicity and flexibility of modelling as well as the easy adaptability to changing
requirements turn out to be beneficial. An evaluation on the Cora dataset that serves as a
common benchmark for accuracy measurements and represents quite “hard” cases yields
a word accuracy of 88.5%, a field accuracy of 82.6% and an instance accuracy of 42.7%.
Therefore our system performs second best on the given testset regarding the published
results of similar projects.

1 Motivation

Research paper search engines like CiteSeer [GBL98, LGB99b, LGB99a, GMLG01] become
increasingly important nowadays as they enhance researchers’ efficiency due to a faster
access to current resources and the possibility for quicker distribution of new releases.
Furthermore hiring decisions become more and more influenced by the research papers
found via such a search engine given the applicant’s name [PM04].
And as the quality of results is directly dependent on the quality of the information ex-
traction component – which in our case tries to recover bibliographic meta-data1 (i.e.
BibTEX subfields) out of bibliographic references (either given as plain-text or as a docu-
ment image) – it is the part of the system with the highest degree of significance. Only an
accurately functioning information extraction module permits the integration of meta-data
from heterogeneous reference sources leading to a strongly networked database [DTS+06].
Although the problem seems to be not that intricate in the first place a closer examina-
tion unsheathes a plethora of complications. Basically a research paper reference can be
defined as an arbitrary series of subfields wherein each transition between subfields occurs
upon parsing a specific separator symbol. Across different reference styles we can ob-
serve dramatic variations amongst separator symbols, spacing, subfield order and content
representation which is illustrated quite well in the following overview of some common
reference styles: [DTS+06]

• APA: Davenport, T., DeLong, D., & Beers, M. (1998). Successful knowledge man-
agement projects. Sloan management review, 39(2), 43-57.

• IEEE: [1] T. Davenport, D. DeLong and M. Beers, ”Successful knowledge manage-
ment projects,” Sloan management review, vol. 39, no. 2, pp. 43-57, 1998.

• ACM: 1. Davenport, T., DeLong, D. and Beers, M. 1998. Successful knowledge
management projects. Sloan management review, 39 (2). 43-57.

1defined as structured data about data [BNP99, LAWH02, Sen04]
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• MISQ: Davenport, T., DeLong, D., and Beers, M. ”Successful knowledge manage-
ment projects,” Sloan management review (39:2) 1998, pp 43-57.

• JMIS: 1.Davenport, T.; DeLong, D.; and Beers, M. Succesful knowledge management
projects. Sloan management review, 39, 2 (1998), 43-57.

• ISR: Davenport, Thomas, David DeLong and Michael Beers, ”Succesful knowledge
management projects,” Sloan management review, 39, 2, (1998), 43-57.

Systems like CiteSeer depend on the ability to assign the highly differing syntactical rep-
resentations of the same paper to one semantical entity, i.e. the file containing the cor-
responding document, for instance to allow grouping of information from multiple citing
papers, bi-directional links between citations and the generation of citation frequency
statistics [LGB99b]. The vast number of varying bibliography styles and the problematics
of explicitly defining each one argue for a machine learning approach and against a rule-
based approach although such systems are being developed and seem to work effectively.
As a major drawback of the rule-based approach should be recorded that it requires a do-
main expert who has to explicitly formulate his knowledge about each reference style that
should be recognized by the information extraction component. Therefore each style has
to be manually analyzed first and then implemented in the system as a rule, dependent on
the symbols already parsed, which is error-prone and time-consuming. Furthermore the
resulting system is not adaptive at all; meaning that references represented in undefined
bibliography styles cannot be recognized at all - even if only a single symbol differs.
By applying machine learning techniques to the problem area we negate the need for a
domain expert and produce a robust system as small changes in syntactical representa-
tions just have a restricted influence on the results, i.e. most subfields – especially those
not directly adjacent to the varying one - should not be affected at all and even a com-
pletely correct classification is possible. Furthermore it is very adaptive as major changes
in the problem domain (common reference styles) can be tackled by training the system
on updated datasets which just requires some preprocessing in contrast to the involved
definition of new rules and the prepending analysis of the changes in the reference styles
which has to be done manually in a rule-based system.

2 Probabilistic Finite State Transducers

As the model of choice we selected probabilistic finite state transducers (PFST) which are
analyzed in the following section by introducing the mathematical foundations, presenting
the possible operations and the used implementation as well as finally highlighting the
excellent applicability to the problem domain of bibliographic meta-data extraction.
The reader is referred to [Het06] for a brief overview about the topic as many of the
principles presented therein receive a more thorough treatment in this elaboration and
thus it can be used as a rough guideline for parts of this section.
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2.1 Mathematical Introduction

In the following part of the elaboration we will formally define probabilistic finite state
machines2 (FSM) by extending the models of finite state automata with transition outputs
yielding finite state transducers and finally addings weights and scoring mechanisms after
supplying the required algebraic foundations.
The papers [THC05a, THC05b] give a thorough theoretical treatment of probabilisitc finite
state machines and can be used in addition to the mathematical introduction given here
as they explain the topic at great length. The first part [THC05a] is devoted to establish
the model of probabilistic finite state machines and inspect their properties whereas the
second part [THC05b] examines the relations to other string-generating devices like hidden
Markov models.
[Moh97] is a very good work as well giving a clean and elaborate algebraic introduction
to probabilistic finite state transducers that probably is more similar to the specifications
given here than in the work mentioned above, and a detailed inspection of their properties.
In addition the applicability to language and speech processing tasks is inspected and
corresponding algorithms are given.

2.1.1 Finite State Acceptors

A finite state automaton or acceptor (FSA) is the model of which probabilistic finite state
transducers are generalized from and thus we will begin with an examination of them
first. Finite state automata consist of a finite, non-zero number of states S and transitions
t ∈ S × ({ε} ∪Σ)× S depending on an input symbol out of an input alphabet Σ between
those states. If the series of transitions s0 →tj0 si0 →tj1 . . . →tjm sin is well-defined for
each possible input composable out of the input alphabet we speak of a deterministic
finite state automaton (DFSA/DFSM); if multiple transitions can be taken at any point
during the parse, i.e. there exist t0, t1 such that t0 = (si, a, sn) and t1 = (si, a, sm) with
n 6= m, we speak of a non-deterministic finite state automaton (NDFSA/NDFSM). So
the state transition mapping is a function in the deterministic case and a relation in the
non-deterministic case.
Furthermore an initial state3 s0, where parsing begins, and a set of final states F , which
define the accepting inputs, have to be specified. Thereby each finite state automaton
defines a language which covers every word that gets accepted by the automaton. Exactly
those languages that get accepted by a finite state automaton are called regular languages.
If parsing reaches a situation where no mapping exists for the given input symbol and the
current state we stop parsing and reject the input string. It should be noted that we can
construct a deterministic finite state automaton for each non-deterministic one that ac-
cepts the same language although the result may be an exponential growth in the number
of necessary states.

Definition A finite state automaton is a quintuple (Σ, S, S0, δ, F ) where:
2meaning both finite state acceptors and transducers
3or a set of initial states S0 in the nondeterministic case respectively
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• Σ is a finite input alphabet with Σ 6= ∅.

• S is a finite set of states with S 6= ∅.

• S0 is a set of initial states with S0 ⊆ S.

• δ is a state transition relation with δ : S × ({ε} ∪ Σ)× S.

• F is a set of final states with F ⊆ S.

Each finite state automaton defines the regular language L(FSA) = {w|FSA reaches a
final state on parsing w} consisting of all words whose parses get accepted.

Example Σ = {f, s, a};S = {0, 1, 2, 3};S0 = {0};F = {3}

δ is a state transition function (as the given finite state acceptor is deterministic) with
δ : S × ({ε} ∪ Σ)→ S and takes the following values:

δ(0, f) = 1; δ(1, s) = 2; δ(2, a) = 3
delta(i, j) undefined for (i, j) /∈ {(0, f), (1, s), (2, a)}

0 1f 2s 3a

This very simple example finite state acceptor just accepts the input string “fsa” and
rejects anything else.

2.1.2 Regular Languages

In the following part we will formalize regular languages (also called Type-3 languages in
the Chomsky hierarchy [Cho56, CM58, Cho59]) and their correspondence to finite state
automata for clarification issues as well as to prepare the theoretical expansion to trans-
ducers and probabilistic weighting.

Definition The regular languages over an alphabet Σ are defined recursively as follows:

• ∅ is a regular language.

• {ε} is a regular language.

• ∀a ∈ Σ: {a} is a regular language.

• ∀ regular languages A,B: A ∪B, A ·B, A∗ are regular languages.

• no other languages over Σ are regular languages.

Theorem 2.1 (Kleene’s theorem) Any language that gets accepted by a finite state au-
tomaton is a regular language.
Any regular language gets accepted by a finite state automaton.
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Proof Refer to [Mar02] (page 145ff.) or your theoretical computer science literature of
choice as the proof is rather technical and too long to include it here.

Corollary 2.2 All finite languages, i.e. all languages that only consist of a finite number
of words, are regular languages.

Proof As each singleton {a} for a ∈ Σ or a = ε is regular and the union/concatenation op-
eration is closed over the collection of regular languages we can construct arbitrary subsets
of words over Σ which stay regular languages. Thereby we can build each finite language
using the operations mentioned above and still maintain the property of regularity. In the
case that the finite language contains no words at all it is regular by definition.

Each regular language can be expressed as a regular expression and vice versa and in fact
both classes share the same level of expressiveness. Furthermore operations on finite state
automata can be treated as operations on the languages4 they generate and insights gained
on one model may be applied to the other. So we can check for instance the isomorphism of
two given finite state automata by testing whether they both generate the same language
and check the equality of two given regular languages by testing whether they both get
generated by the same minimal deterministic finite state automaton respectively.
Although both models are isomorphic it should be noted that some regular languages can
only be expressed by exponentially growing finite state automata while the corresponding
regular expressions only grow linearly in size which is an important practical issue.

2.1.3 Finite State Transducers

The inclusion of a symbol of the output alphabet Γ that is output on each transition
t ∈ S × ({ε} ∪Σ)× ({ε} ∪ Γ)× S into the model leads to a finite state transducer (FST).
If t only depends on the current state we speak of the Moore model; if it additionally
depends on the input symbol we speak of the Mealy model. Both models are equivalent in
the sense that they can be algorithmically transformed vice versa and in practice mixed
models are often used as well.
Thus we do not only accept or reject a given input string any more as in the case of
finite states automata but generate an output string depending on the parse of the input
(or reject the input by outputting nothing). So each finite state transducer introduces a
relation between input and output language. If at any point during the parsing procedure
we reach a point where δ is undefined for the current input symbol and state we reject the
given input string like in the case of finite state acceptors.

Definition A finite state transducer is a six-tuple (Σ,Γ, S, S0, δ, F ) where:

• Σ is a finite input alphabet with Σ 6= ∅.

• Γ is a finite output alphabet with Γ 6= ∅.
4or rather as operations on the sets of words that are contained in the corresponding language (cf. to

set theoretical operations)



8 2 PROBABILISTIC FINITE STATE TRANSDUCERS

• S is a finite set of states with S 6= ∅.

• S0 is a set of initial states with S0 ⊆ S.

• δ is a state transition relation with δ : S × ({ε} ∪ Σ)× ({ε} ∪ Γ)× S.

• F is a set of final states with F ⊆ S.

Each finite state transducer FST computes a rational relation ω between input language
Σ∗ and output language Γ∗ such that:

xωy if and only if ∃s ∈ S0, f ∈ F : (s, x, y, f) ∈ δ∗ (1)

This means that FST transduces a string x ∈ Σ∗ out of the input language into a string
y ∈ Γ∗ out of the output language if and only if there exists a path from an initial state
s ∈ S0 to a final state f ∈ F with input label x and output label y.

Example Σ = {f, s, a, t}; Γ = {f, s,m};S = {0, 1, 2, 3};S0 = {0};F = {3}

δ is a state transition function (as the given finite state transducer is deterministic) with
δ : S × ({ε} ∪ Σ)× ({ε} ∪ Γ)→ S and takes the following values:

δ(0, f, f) = 1; δ(1, s, s) = 2; δ(2, a,m) = 3; δ(2, t,m) = 3
δ(i, j, k) undefined for (i, j, k) /∈ {(0, f, f), (1, s, s), (2, a,m), (2, t,m)}

0 1f:f 2s:s 3a:m
t:m

This easy example finite state transducer just relates the input strings “fsa” and “fst” to
the output string “fsm” and rejects anything else.

2.1.4 Probabilistic Weighting

By assigning weights to transitions w(t) and final states w(sfi
) as well as providing an

appropriate evaluation scheme (semiring (0,1,⊕,⊗)) we extend the given model of finite
state transducers to weighted finite state transducers (WFST). If we additionally use a
specific semiring for scoring such that the weight evaluation coheres to probabilistic laws
we may explicitly speak of probabilistic finite state transducers which were our model of
choice for the bibliographic meta-data extraction project.
Let us continue with the formal introduction of the required algebraic structures that are
used in the process of score evaluation in weighted or probabilistic finite state transducers.

Definition A monoid (M,�, e) is a set M with a binary operation � : M ×M →M such
that:
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• � is associative, i.e. ∀a, b, c ∈M : (a� b)� c = a� (b� c).

• ∃ identity element e regarding �, i.e. ∃e ∈M∀a ∈M : a� e = e� a = a.

• M is closed regarding �, i.e. ∀a, b ∈M : a� b ∈M .

It is called a commutative or abelian monoid if � is commutative, i.e. ∀a, b ∈M : a� b =
b� a.

Definition A semiring (R,⊕,⊗,0,1) is a set R and two binary operations ⊕ (addition)
and ⊗ (multiplication) satisfying the following properties:

• (R,⊕,0) is a commutative monoid with identity element 0.

• (R,⊗,1) is a monoid with identity element 1.

• Distributivity:
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

• Annihilation:
0⊗ a = a⊗ 0 = 0

It is called a commutative semiring if ⊗ is commutative, i.e. ∀a, b ∈ R: a⊗ b = b⊗ a.
It is called an idempotent semiring if ⊕ is idempotent, i.e. ∀a ∈ R: a⊕ a = a.

Definition A weighted finite state transducer is an eight-tuple (Σ,Γ, S, S0, δ, F, w, (R,⊕,⊗,0,1))
such that:

• Σ is a finite input alphabet with Σ 6= ∅.

• Γ is a finite output alphabet with Γ 6= ∅.

• S is a finite set of states with S 6= ∅.

• S0 is a set of initial states with S0 ⊆ S.

• δ is a state transition relation with δ : S × ({ε} ∪ Σ)× ({ε} ∪ Γ)× S.

• F is a set of final states with F ⊆ S.

• w is a weight relation with w : T ∪ F × R where T = {t|t ∈ δ}.

• (R,⊕,⊗,0,1) is a weight semiring where the following holds:
0⊕ x = x, 1⊗ x = x, 0⊗ x = 0, 0⊗ 1 = 0, whereby
0 ∈ R identity element regarding ⊕ and
1 ∈ R identity element regarding ⊗.

Parallel transition weights are evaluated according to the ⊕ operator.
Serial transition weights are evaluated according to the ⊗ operator.
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Now our model does not only establish a relation ω between input alphabet Σ∗ and
output alphabet Γ∗ but it additionally allows us to compute the weight for each element
(x, y) ∈ Σ∗ × Γ∗ via score evaluation according to the specified semiring. Thereby w is
a function if one transition only has one weight assigned to it which is the practically
relevant case.

Definition A probabilistic finite state transducer is a weighted finite state transducer
(Σ,Γ, S, s0, δ, F, w, r) with a specific type of weight semiring r ∈ {rpr, rlog}:

• The weight semiring rpr = (R,+,×, 0, 1) leads to a probabilistic evaluation of
weights, i.e. we sum over parallel transition weights and multiply over serial transi-
tion weights.

• The weight semiring rlog = (R,min,+,∞, 0) leads to a weight evaluation according
to −log probability, i.e. we take the minimum over parallel transition weights and
sum over serial transition weights.

This specializes the model of weighted finite state transducers in the sense that the weights
computed for each element (x, y) ∈ Σ∗ × Γ∗ now represent the corresponding probablities
or −log probabilities respectively which allows us to retrieve the most probable mapping
for a given input string via shortest path search (i.e. Viterbi or A∗).
Using −log probability reduces the operations “by one level”, i.e. multiplication to addi-
tion and addition to taking the minimum, thus being the practically relevant solution due
to a significant reduction of computational complexity.

Example Here we want to illustrate the different evaluation procedures depending on the
type of semiring chosen as presented in [Het06]. We chose this example as it explains the
different scoring mechanisms comprehensible although it is not practically relevant due to
the nondeterministic and in fact meaningless model after all. Let us first take a look at
the weighted model without any score evaluations that have been applied yet.

Σ = {a, b}; Γ = {a, b};S = {0, 1, 2};S0 = {0};F = {2}

δ is a state transition function (as the given weighted finite state transducer is deter-
ministic) with δ : S × ({ε} ∪ Σ)× ({ε} ∪ Γ)→ S and takes the following values:

δ(0, a, a) = 1; δ(1, b, b) = 2
δ(i, j, k) undefined for (i, j, k) /∈ {(0, a, a), (1, b, b)}

w is a weight relation (as both transitions have two weights associated with them) with
w : T ∪ F × R where T = {t|t ∈ δ} and spans the following elements:

w = {((0, a, a), 0.6), ((0, a, a), 0.4), ((1, b, b), 0.7), ((1, b, b), 0.3), (2, 0.5)}
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0 1a:a/0.6
a:a/0.4

2/0.5b:b/0.7
b:b/0.3

A weight evaluation according to the semiring rpr = (R,+,×, 0, 1), i.e. a probabilistic
evaluation of weights, relates the input “ab” to the output “ab” while giving it a score of
0.5 (= 1× 1× 0.5).

0 1a:a/1 2/0.5b:b/1

A weight evaluation according to the semiring rlog = (R,min,+,∞, 0), i.e. a weight
evaluation according to −log probability, maps the input string “ab” to the output “ab”
scoring it with 1.2 (= 0.4 + 0.3 + 0.5).

0 1a:a/0.4 2/0.5b:b/0.3

2.2 Operations

Here we will illustrate and explain the various mechanisms that can be applied to finite
state transducers for modelling or optimization purposes. The task of constructive oper-
ations is to easily derive models with new properties and capabilities out of given models
(extension) whereas identity operations try to reduce or determinize given models without
changing their properties (optimization).

2.2.1 Constructive Operations

Each constructive operation has the capability to generate a new model with distinct prop-
erties from the source model(s) by applying a series of defined modifications, i.e. applying
an algorithm, on the source model(s). By using an adequate series of constructive oper-
ations on some simple machines we generate a complex one with the desired capabilities
step by step and this with a high level of flexibility due to the modularity of the process
leading to a fast and intuitive modelling procedure.
The set of constructive operations that can be applied to finite state machines spans the
computation of a closure, the union of a group of machines, the concatenation of machines,
the complementation of a machine, the intersection of machines and the composition of
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machines. We will now continue and explain each operation on its own and give corre-
sponding examples whereby the reader may provide himself5 an overview in [Het06].

Computing the transitive closure of a finite state machine M is done by inserting ep-
silon transitions from all final states F of M to all starting states S0 of M thus generating
the language L(M+) = {w1 . . . wi|i > 0, wj ∈ L(M), 1 ≤ j ≤ i} which consists of an
arbitrary (> 0) number of words out of L(M). Addition of the reflexive closure allows for
parsing to stop in the starting states as well, i.e. FM∗ = FM ∪ S0M , which leads to the
language L(M∗) = L(M+) ∪ {ε}.

Example (Closure)

0 1f:f 2s:s 3a:m
t:m

source machine

0

1f:f 2s:s
3

a:m
t:m

ε:ε

transitive closure

0

1f:f 2s:s
3

a:m
t:m

ε:ε

transitive and reflexive closure

The union of a set of finite state machines M1, . . . ,Mn is interpretable as the union of
the languages L(M1), . . . , L(Mn) they generate which results in a machine Q that accepts

5apologies to any female readers but we will restrict ourselves to the masculine form for the sake of
simplicity
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everything that is accepted by any machine of the set but nothing else, i.e. L(Q) = L(M1)∪
. . . ∪ L(Mn). Technically we just introduce a new starting state q0 from where epsilon
transitions are leading to all original starting states s0,j,Mi(i ∈ 1, . . . , n; j ∈ 1, . . . , |S0,Mi |)
of the source machines whereby the freshly introduced state is the only starting state any
more, i.e. S0 = {q0}.

Example (Union)

0 1f:f 2s:s 3a:m

source machine 1

0 1f:f 2s:s 3t:m

source machine 2

0

1,0ε:ε

2,0

ε:ε

1,1f:f 1,2s:s 1,3a:m

2,1f:f 2,2s:s
2,3

t:m

union of source machines

Concatenation can be understood as serially joining the languages L(M1), . . . , L(Mn)
generated by the involved finite state machines M1, . . . ,Mn thus leading to a machine
Q with L(Q) = L(M1) • . . . • L(Mn) that accepts all words w = w1 . . . wn with
w1 ∈ L(M1), . . . , wn ∈ L(Mn). Furthermore the starting states of the first machine are
the starting states of the resulting model, i.e. S0 = S0,M1 , and the final states of the
last machine are the final states of the resulting model, i.e. F = FMn , whereby distinct
machines get connected via an epsilon transition.

Example (Concatenation)

0 1f:f 2s:s

source machine 1
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0 1a:m
t:m

source machine 2

1,0 1,1f:f 1,2s:s 2,0ε:ε 2,1a:m
t:m

concatenation of source machines

The complementation6 of a finite state automaton A yields a model Acompl that shares the
input and output alphabet with A but accepts exactly those words that are rejected by
the original model, i.e. L(Acompl) = {w|w /∈ L(A)}. No example is given for this operation
as illustration is a bit problematic and not really helpful at all.

By computing the intersection7 of finite state automata A1, A2 we generate a model A
in which the target states (p, q) are derived from source state pairs p out of A1 and q out
of A2. Target states (p, q) are final if p and q are both final states in their source automata
and transitions with a label l are included if p and q have a corresponding transition
with label l. In the case of weighted finite state automata we combine the source weights
according to ⊗.

Example (Intersection) [Het06]

0

x

1x
y

source machine 1

0

x

1y

z

6we can only apply the complement to finite state automata
7the intersection operation can only be applied to finite state automata
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source machine 2

0,0

x
1,0

x

1,1

y

intersection of source machines

Via composing8 two final state transducers T1, T2 we construct a model T where the target
states (p, q) are derived from source state pairs p out of T1 and q out of T2. (p, q) is final
if both p and q are final and weight evaluation is done according to ⊗. Differing from the
intersection is now that transitions labelled l : m are included if in p exists a transition
with label x : n and in q exists a transition with label n : y, i.e. we compose the transition
labels.

Example (Composition)
This example is taken out of [Het06] as it visualizes the application of the composition
operation for the task of natural language processing. By composing one transducer that
maps words to phonemes with one which maps phonems to phones we obtain a final model
where words get mapped to phones.

0 1IT:/ih/ 2ε:/t/

source machine 1 (words → phonemes)

0

/ih/:[ih]
/t/:[t]

1/t/:[tcl]
ε:[t]

source machine 2 (phonemes → phones)

8composing two final state automata is identical to intersecting them
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0,0 1,0IT:[ih]
2,1ε:[tcl]

2,0ε:[t]

ε:[t]

composition of source machines (words → phones)

2.2.2 Identity Operations

Identity operations are distinct from constructive ones as they only aim for a syntactical
reduction of the model size meaning the resulting model still maintains exactly the same
transition relation, weight relation and scoring mechanism as the source model, thus still
relating each given input to the original output with an unchanged score, but optimally
needing less states and transitions in the case of epsilon removal and minimization. De-
terminization on the other hand may increase the storage requirements, i.e. increase the
number of states and transitions, but then reducing the complexity of the parsing proce-
dure as only one path in the machine may match any given input sequence any more.
We will continue with a short description of each identity operation while giving examples
along the way. For a very detailed treatment of the topic and corresponding algorithms
the interested reader is referred to [Moh97, MPR00]. It should be noted that identity
operations are always applied to only one source model as the goal is only optimization
whereas some constructive operations may generate models that have been derived from
multiple sources.

The first step to optimize a given model is to remove all epsilon transitions included
like shown below which is technically achieved by computing the epsilon closure for each
state, i.e. the set of states that is reachable by an arbitrary number of epsilon transitions,
and aggregate them accordingly.

Example (Epsilon Removal)

0

1,0ε:ε

2,0

ε:ε

1,1f:f 1,2s:s 1,3a:a

2,1f:f 2,2s:s
2,3

t:t

source machine
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1,0;2,0

1,1f:f

2,1

f:f

1,2s:s 1,3a:a

2,2s:s
2,3

t:t

resulting machine (epsilons removed)

Now it is possible to determinize the given model which means to resolve all ambiguities by
constructing target states which are derived from subsets of (input states,output,weight)
and an adequate delay of outputs and weights. The output of the transitions in the target
model correspond to the least common prefix of subset outputs. For finite state automata
the worst case is exponential in the number of states whereas for finite state transducers
the worst case may be infinite due to unresolvable ambiguities, i.e. one input sequence
gets mapped to multiple output sequence.

Example (Determinization)

1,0;2,0 1,1;2,1f:f 1,2;2,2s:s

1,3a:a

2,3

t:t

resulting machine (determinized)

The task of minimization is to generate a deterministic model with a minimal number of
states that is equivalent to the given one, which is achieved by merging the equivalent
states. For cyclic finite state machines the complexity is O(Nlog(N)) whereas for acyclic
ones it is linear.

Example (Minimization)

1,0;2,0 1,1;2,1f:f 1,2;2,2s:s 1,3;2,3a:a
t:t

resulting machine (minimized)
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2.3 Implementation

For our implementation we used the finite state transducer toolkit by the Massachussettes
Institute of Technology (MIT-FST9) that is published as open source software under the
BSD license by Lee Hetherington. A brief treatment of its design and implementation is
given in [Het04] whereas in [MPR00] the finite state transducer library used by AT&T is
handled in detail. The toolkit is composed of a large number of command-line tools where
each one encapsulates a single functionality and works using the UNIX pipe which allows
for rapid development of models via concatenated commands and/or shell scripts. Alter-
natively a C++ interface that incorporates exactly the same functionality but allows for
easy extension and modification is provided. As our system has been designed primarily
for research purposes and not for mainstream usage we chose the former solution.
Particulary the ability to generate a weighted transducer model by expectation maximiza-
tion training of an unweighted transducer based on a set of pairs of input and output
strings allows for efficient development of language models. A desirable feature that is
not implemented in MIT-FST is the possibility to define transitions accepting all symbols
out of the input alphabet that have no explicitly specified transition in the corresponding
state as this would allow for a more flexible modelling in some places and especially negate
the effect of non-acceptance upon the parse of undefined input symbols.

2.4 Applicability

Finite state transducer techniques have been successfully applied to various tasks of com-
putational linguistics such as dictionary encoding, text processing and speech processing
due to their ease of use and their affinity to regular languages. A thorough treatment of
the model itself and various applications for natural language processing for the interested
reader is given in [RS97] as we will restrict ourselves to the task of bibliographic reference
recognition in this work. Every bibliographic reference is basically a string which is com-
posed out of a series of different subfields such as author, title or journal whereby those
subfields are separated by specific symbols such as a dot or a semicolon. The subfields are
independent in the sense that their content stands in no relation to the content of other
subfields which allows to model each subfield as a separate finite state transducer and link
them together adequately using the knowledge of the occuring separator symbols and the
class of the previous subfield.
By using finite state transducer operations we can easily build the required language model
in a modularized way out of the various subfield models. So we can use the union operation
on a set of subfield transducers to represent the choice between one of them, concatenate
a model which parses the separator symbols and compute the transitive closure of the
resulting model to allow an arbitrary (non-empty) series of different subfields to be recog-
nized. We will inspect the construction of the language model in a more detailled way in
the section about system design as we just wanted to give a first impression of the prac-
tical usability of finite state transducer models for the task area of bibiographic reference
recognition.

9http://people.csail.mit.edu/ilh//fst
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3 System Design

This part of the work is devoted to the bibliographic reference recognition system we
constructed using probabilistic finite state transducers. Thereby the task of bibliographic
reference recognition can be understood as seperating a given string (=reference) into an
adequate set of subfields with the goal to extract the bibliographic meta-data and trans-
form it into a machine-readable format (BibTEX in our case).

Example Bibliographic Reference Recognition (cf. Motivation)

Input:
Davenport, Thomas, David DeLong and Michael Beers, “Successful knowledge manage-
ment projects,” Sloan management review, 39, 2, (1998), 43-57.

Output:
author = “Davenport, Thomas and DeLong, David and Beers, Michael”
title = “Successful knowledge management projects”
journal = “Sloan management review”
volume = “39”
number = “2”
year = “1998”
pages = “43-57”

First we will present the design principles we have applied and outline the underlying
development process of the system from scratch to the current status. Then the architec-
ture of the system is inspected whereby we will differ between the language model which
handles the task of tagging the subfields with appropriate handles, the front-end which
serves as an graphical user interface to the system and the back-end which handles the
data conversion between the front-end and the language model. In the next part of this
section the used training data which served as a source for deriving the weights of the final
language model via expectation maximization training is presented and the general ben-
efits and differences in contrast to rule-based systems are discussed in detail. Finally we
wil review some possible improvements of the current system and talk over their expected
effects.

3.1 Modelling Approach

The first step before the system design started was to get used to the MIT-FST toolkit,
understand the assortment of tools and especially how to use them efficiently. Therefore
we started out with the design of a simple rule-based system that recognizes bibliographic
references in the BibTEX style ’plain’ whereby things like the user interface or the con-
version from transducer output to BibTEX have been reused in the current system later
on. During this process we built a language model for the author’s name according to the
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CiteSeer database and constructed models for common representations like page numbers
or dates. These parts of the system have been excluded from the final design as they
slowed down the runtime considerably and the experimental results have been quite good
without them as well. We will discuss the possible incorporation in the current system in
the subsection about possible improvements at the end of this part.
Due to the evolutionary type of design we chose the plan was to extend the functional-
ity of the system iteratively and add new functionality stepwise. The goal was to build
a style-independent probabilistic model by ongoing refinement of the prototypes with a
steady performance evaluation to measure the progress. Unfortunately this restricted to
hand-written test cases for quite some time as the underlying training and testing data
has not been acquired until the system design matured. We started out by relaxing the
field sequence and the type of seperator symbol used between the subfields, then extended
the types of subfields to match the dataset and finally trained the inter-field transition
probabilities according to expectation maximization training to give a basic outline of
design. It is presented in detail in the following section.

3.2 System Architecture

In this part we will inspect the different parts of the system, present their functionality
and how they communicate to each other. The basic workflow is depicted in the following
diagram.

string references // front-end // back-end

��

tagged references

��

language modeloo normalized referencesoo

back-end // front-end // BibTEX references

Thereby we enter a set of bibliographic references as plain-text into the front-end which
passes them to the back-end where they are normalized. Then the language model takes
the normalized references one by one and tags the subfields according to the finite state
transducer parse. Finally the tagged output gets converted into BibTEX format and passed
back to the front-end which displays the results to the user. Details of the different modules
are thoroughly presented in their corresponding subsections.

3.2.1 Front-End

This is the part of the system which handles all the user interaction via a PHP-based web
application. Bibliographic references can be entered into a multi-line HTML text area
whereby each gets passed one by one to the rest of the system for classification and the
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resulting BibTEX entries are displayed on a results webpage. A planned extension is the
ability to enter a document image as input, process it with OCR and pass the recognized
text into the system for bibliographic meta-data extraction which would allow for easy
application to scanned references. Basically this module has no functionality on its own
and only serves usability purposes.

3.2.2 Language Model

According to the used dataset (cf. Training Aspects for details) we have specified a fi-
nite state transducer for each possibly occuring subfield – namely author, booktitle, date,
editor, institution, journal, location, note, pages, publisher, tech, title, volume. These
subfield transducers are structured quite simple as they only output the corresponding
subfield tag, then allow the parse of an arbitrary number of unspecified symbols via an
intrafield unigram and stop in a final state upon reading a separator symbol as shown in
the diagram below. Thereby TAG represents the type of subfield (i.e. author), CHAR
consists of the whole alphabet and SEP is a subset of CHAR including all possible in-
terfield separator symbols like a colon or a dot. This allows for the parsing of separator
symbols intrafield as we cannot exclude the feasibility of them occuring there – like a
dot that indicates an abbreviation. Although the characters occuring intrafield are only
incorporated using an unigram, i.e. their weights are constant for each type of subfield
and do not rely on already parsed characters, the results are quite good as we will see.

0 1ε:TAG

CHAR:CHAR

2SEP:SEP

simplified subfield model

Now the overall language model is built as the union of the different subfields whereby
each final state gets additional epsilon transitions leading to the first states of the subfield
transducers. Thus we basically model a bigram of the subfields – as it is shown below in
a simplified form – which means that the parse of a subfield transducer depends on the
type of the last subfield.
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0

F1.1

ε:ε

F2.1

ε:ε

Fn.1

ε:ε

F1.2ε:TAG_1

CHAR:CHAR

F1.3

SEP:SEP
ε:ε

ε:ε

ε:ε
F2.2ε:TAG_2

CHAR:CHAR

F2.3

SEP:SEP

ε:ε

ε:ε

ε:ε

Fn.2

ε:TAG_n CHAR:CHAR
Fn.3SEP:SEP

ε:ε

ε:ε

ε:ε

simplified language model

By composing the resulting language model (after training) with a finite state transducer
that represents a given bibliographic reference we receive a transducer that delivers us a
tagging of subfields according to the highest probabilistic evaluation.

3.2.3 Back-End

The back-end handles the task of data conversion between the language model and the
front-end. Thereby the entered reference (plain-text) is normalized in the sense that un-
known symbols are removed as they would interfere with the parsing process and symbols
are mapped in such a way that allows for conversion of the string into a finite state
transducer, i.e. we have to map spaces to a special symbol, convert characters with a
specialized meaning10 in MIT-FST to another representation and separate each symbol
by a real space. Now the modified input is ready for finite state transducer conversion
via the MIT-FST tool fst from string. The resulting finite state transducer gets composed
with the language model and a following search on this one leads to a tagging of subfields
according to the highest probability.
The tagged output of the finite state transducer parse is still in normalized format and has
to be processed back into human-readable form to allow passing it back to the front-end.
Thereby all conversion steps described above have basically to be reverted, i.e. symbols
are mapped back to their original meaning, the newly introduced spaces are removed and
the original spaces are restored. Finally each tagged sequence of the whole reference gets
interpreted as a BibTEX subfield and the results are passed back to the front-end for dis-
playing them to the user. In the current state all entries are classified as @misc as no
mechanisms for differentiating between the reference types have been incorporated into
the system yet.

3.3 Training Aspects

Here we discuss the Cora dataset11 that has been used for training purposes and talk
about the benefits of a system based on training against a rule-based one. We chose this

10i.e. an epsilon is denoted by a comma
11http://www.cs.umass.edu/ mccallum/data/cora-ie.tar.gz
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dataset as it seems to be the most widespread one that has been used for the training and
evaluation of bibliograhic reference recognition systems and it is freely downloadable from
the web as well.

3.3.1 Dataset

We partitioned the 500 research paper citations included in the Cora dataset into a subset
of training and testing samples whereby we just took the first 350 for training and the
following 150 for testing as unfortunately no specific partitioning has been published for
comparison purposes by other researchers [DTS+06, MNRS99a, PM04] and we were unable
to retrieve the explicit partitioning used by them. To allow for an easy measurement of
performance it would make sense to enforce a specific partitioning across the different
systems as changes in the training and testing set may very well lead to significant changes
in accuracy thus obfuscating the results.
The references contain exactly those 13 fields that have been modelled as subfields and
have been listed in the subsection about the language model. By application of expectation
maximization training on the language model described above using the training subset
of the Cora references we acquire our final probabilistically weighted language model.
Thereby the field content is trained as a unigram and the field sequence is trained as a
bigram because of the structure of the language model.

3.3.2 Benefits

By designing a system that is based on training data we negate the need for a domain
expert that manually analyzes the different BibTEX styles and derives adequate rules out
of them. This reduces the time effort needed for defining the rules and prevents errors
during the process thus resulting in a highly efficient system. Furthermore we may adjust
the language model to new reference styles by repeating the expectation maximization
training process on a new dataset that fits those styles. Therefore basically no manual
intervention is needed as the training procedure is highly automated. This is not possible
in rule-based systems as another manual analysis of the new styles and an adequate rule
definition has to be done again. Hence we can note that our system works with a high
degree of flexibility and adaptability in regard to changing bibliographic reference styles.
Another benefit is the resulting robustness of the system as small changes in the underlying
styles should not influence the overall results too much as it may be the case in rule-based
systems depending on the quality of the rule definition. This means that i.e. a switch
of a separator symbol or a change of field ordering could still deliver the correct result
but should at worst result in a local error due to the structure of our language model as
subfields are only influenced by their direct predecessor. It is thinkable but unprobable
that such small changes propagate errors through the whole reference but when using a
rule-based approach all those eventualities have to be incorporated in the rules or the
parsing cannot be successful at all. However we would have to conduct more experiments
to support the statement.
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3.4 Self-Evident Improvements

Let us look at some obvious methods for improving the system further in this section.
The first thing to think about is to exchange the subfield content unigram with a bigram
or trigram as it is quite easy to implement and could increase the system accuracy in a
significant way. It would also be possible to construct the language model as an interfield
trigram thus including the last two predecessors of each subfield in the decision process.
Although these measures will improve the system very probably it comes with the side-
effect of performance reduction. Therefore we would need to find a good trade-off between
runtime and accuracy as the system needs to be practically usable by conducting further
experiments.
Another evident modification would be to incorporate the already partly available models
for common representations like an authors’ name or date model thus resulting in some
type of hybrid system as this could already be seen as a rule definition which restricts the
system’s robustness but improves results as long as the common representations’ models
match the corresponding parts of the reference strings. Further experiments with different
setups of included representations would have to be run to determine an optimal language
model in respect to the testing data. But it should be regarded that inclusion of too many
specific models may very well lead to better results on the given set of testing samples but
reduce the system’s performance in general.
Finally it would be nice to implement some sort of reference type classification as all
BibTEX entries are currently classified as @misc only but the problem is not as trivial as it
may sound in the first place. For instance it is not easy to distinguish between @journal or
@inproceedings as both may share a relatively identical structure. Probably the simplest
way to include a type differentation would seem to build a classificator that distinguishes
after the overall transducer parsing process depending on the occuring subfields and their
content what kind of reference we encountered.

4 Performance Evaluation

Here we will inspect the performance of the system after defining relevant performance
measures that serve as a basis for evaluation and allow for comparison. After presenting
the other existing relevant systems in the area of bibliographic meta-data extraction we
will compare the experimental results and conclude the section with an analysis and a
dIscussion of possible measures to improve them further.

4.1 Performance Measures

We used the common performance measures as introduced in [PM04, DTS+06]. Thereby
we have not implemented the F1-measure yet but we will give its definition as an incor-
poration in the near future for a better comparability of accuracy is desirable.

word accuracy = |correctly recognized words|
|words|
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field accuracy = |correctly recognized subfields|
|subfields|

F1 accuracy = 2×precision×recall
precision+recall

instance accuracy = |correctly recognized references|
|references|

The different types of error measurements are structured in a hierarchical sense to give a
better impression of the system performance. So word accuracy favors fields with many
words, field accuracy favors fields with few words and instance accuracy gives a picture of
how well the system performs in an overall view as only completely correct references are
counted.

4.2 Experimental Results

Let us begin this subsection by giving a table with an overview of the different systems
that have been evaluated on the Cora reference dataset and then proceed with a discussion
of the results.

system / accuracy measure word field F1 instance
CRF-based [PM04] 95.4% – 91.5% 77.3%
our system 88.5% 82.6% – 42.7%
HMM-based [MNRS99b] 85.1% – 77.6% 10.0%
rule-based [DTS+06] – 73.34% – –

We can see that the CRF-based system by [PM04] still maintains the best performance on
the Cora dataset in regard to all different accuracy measurements. Especially the instance
accuracy which only matches completely correct references reaches a very high value in
comparison to the other systems. Our approach performs slightly worse on the word ac-
curacy and significantly worse on the instance accuracy in comparison to that system.
The HMM-based system by [MNRS99b] again performs slightly worse on the word accu-
racy and significantly worse on the instance accuracy than our system. Interpretation of
the strongly differing instance accuracy alongside the nearly identical word accuracy leads
to the assumption that the HMM-based approach yields a lot of minor errors that only
influence few words but degrade the correctness of the references overall.
As the rule-based approach by [DTS+06] only measured the field specific performance no
exact comparison is possible but a lower performance than our system seems probable due
to the significant accuracy difference. Thus our system currently seems to be the second
best performing system in regard to the Cora dataset that is available at the moment.
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fruitful discussions about various design issues of the resulting system which saved a lot
of effort and majorly contributed to the good results.

6 Conclusion

As finite state transducers have proven their applicability to many tasks of computational
linguistics and permit easy modelling they seem a natural choice for deriving a language
model adjusted to the recognition of bibliographic references. The modularized composi-
tion of the overall language model allows for subfield model exchanges with minor efforts
and the highly automated training procedure increases the reusability of our system re-
garding changes in reference styles and types. Especially in comparison to rule-based
approaches our system yields a higher degree of robustness as no strict rulings are en-
forced and local errors should not propagate through the entire reference. Furthermore we
negate the need for a domain expert and thus decrease the time requirements for adapt-
ing the system to changing requirements. As normally rules would have to be manually
derived after analysis of the various reference styles we just have to rerun the expectation
maximization training procedure on an adequate dataset representing the syntactical dif-
ferences of the styles.
The relatively simple structure of the language model indicates that our system’s per-
formance can be increased significantly by replacing the intrafield unigram with a bi- or
trigram and eventually the interfield bigram with a trigram. Also the models for common
representations that have been built during the first development stages (i.e. authors’
name model out of CiteSeer data) could be additionally incorporated for further system
specialization according to a set of reference styles. Thereby we have to find an acceptable
tradeoff between the system’s runtime and accuracy as huge language models increase
the parsing time significantly which on the one hand leads to an error rate improvement
but on the other hand negates the practical usability. Additionally we want to avoid an
overfitting of the system on a specific type of reference style to maintain its robustness.
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