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Abstract

Support Vector Machines (SVMs) have been one of the most prominent machine learn-

ing techniques for the past decade. In this thesis, the effectiveness of applying SVMs

for detecting outliers in an unsupervised setting is investigated. Unsupervised anomaly

detection techniques operate directly on an unseen dataset, under the assumption that

outliers are sparsely present in it. One-class SVM, an extension to SVMs for unlabeled

data, can be used for anomaly detection. Even though outliers are accounted for in

one-class SVMs, they greatly influence the learnt model. Hence, two modifications to

one-class SVMs are presented here: robust one-class SVMs and eta one-class SVMs.

Both modifications attempt to make the learnt decision boundary less deterred by out-

liers. Additionally, two approaches are migrated from the semi-supervised literature to

investigate their effectiveness in our context: subspace division and the tuning of the

spread of the Gaussian kernel. Subspace division is particularly tailored for high di-

mensional data, where the outlierness of a point is the result of fusing its outlier score

in different lower dimensional subspaces. The spread of the Gaussian kernel, crucial to

the effectiveness of SVMs, can be estimated prior to running the SVM relying on the

kernel’s properties. For evaluation, SVM based algorithms are compared against nine

other state-of-the-art unsupervised anomaly detection techniques. The results affirmed

the proficiency of SVM based algorithms, with eta one-class SVM performing best in two

out of the four datasets. In regards to subspace division, the preliminary results showed

no significant improvement.
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Chapter 1

Introduction

1.1 Introduction

Anomalies is the term that is used to describe distinctive behavior. These are of interest

to analysts as they can help prevent unauthorized access to information [45], detect

frauds [55], detect changes in satellite images and even help in early medical diagnosis [37].

Different learning approaches can be used to solve the anomaly detection problem [13].

Like the majority of binary classification tasks, a supervised learning approach can be

used to detect anomalies. In that case, a balanced training dataset containing normal and

anomalous instances is used in order to learn a model. A previously unseen record can

then be classified according to the learned model in the testing phase. The second learning

approach is semi-supervised, where the algorithm learns to model the behavior of the

normal records. Records that do not fit into the model are labeled as outliers in the testing

phase. The last learning approach is unsupervised; it has no information beforehand

about the dataset. There are two main underlying assumptions for the unsupervised

algorithms: A small fraction of points are outlying, and that they behave considerably

different than normal records. Figure 1.1 depicts the differences between the different

learning approaches.

The ease of applicability of unsupervised algorithms makes it particularly suited for prac-

tical anomaly detection problems. The reason behind this is the ability is to directly apply

1
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Supervised

Semi-supervised

Unsupervised

Test

Train

Test

Train

Figure 1.1: An illustration showing the training/test sets of each of the learning modes.
Grey, black and white points represents normal, outlying and unlabled data respectively.
Unsupervised learning requires no prior knowledge and hence no training dataset.

the algorithms without having a prior training phase. Additionally in some applications,

the nature of the anomalous records is constantly changing, thus obtaining a training

dataset that accurately describe outliers is almost impossible.

Anomaly detection algorithms can be categorized according to the assumptions they make

about the outlying records [13]. In an unsupervised setting, the most popular category

and usually the most capable category consists of nearest-neighbor based algorithms. The

strength of those algorithms stem from the fact that they are inherently unsupervised

and have an intuitive criteria for detecting outliers. Its limitation include its quadratic

time complexity and its uncertain ability in handling high dimensional data.

The popularity of Support Vector Machines is evident from the diversity of its appli-

cations. Examples include handwritten digit recognition [50], object recognition [44],

speaker identification [11], text categorization [10] and anomaly detection [30]. The clas-

sification performance of SVM in those applications is at least as good as other methods

in terms of generalization error [10]. The SVMs takes into account the capacity of the

learnt model, which is its ability to represent any arbitrary dataset with the minimum er-

ror [10]. This Makes SVMs a Structure Risk Minimization (SRM) procedure, which is an

appealing alternative to the traditional Empirical Risk Minimization (ERM) procedures.
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Support Vector Machines have a lot of agreeable amenities making them a machine learn-

ing favorite. The first of which is its rich and well-investigated theoretical basis. Moreover,

its objective is a convex optimization objective ensuring the existence of a solution. Not

to mention the sparsity of its solution, which makes it more efficient in comparison to

other kernel-based approaches [8]. Those benefits make SVM an attractive candidate for

the unsupervised anomaly detection problem as well.

Subspace division is a subcategory of ensemble analysis techniques, which aim at making

outlier detection less dependent on the dataset or data locality [1]. Subspace division

is targeted to high dimensional datasets, where traditional proximity based similarity

measures tend to be insufficient. By dividing the original input into several lower dimen-

sional subspaces, the outliers can be effectively identified in each subspace independently.

Then, the outlierness of each point is a combination of the outlier score in each of the

subspaces. In [27], a general framework is defined for subspace division, however the sub-

spaces are given as an input. Here, I apply the subspace selection technique, proposed

by Evangelista [18], as a possible solution to the curse of dimensionality problem.

1.2 Contributions

The main contributions of this thesis can be summarized in the following points:

1. Proposed two modifications for one-class SVM, in order to make it more suitable for

unsupervised anomaly detection: robust one-class SVM and eta one-class SVM1.

2. Compared the one-class SVM and the two proposed variants with nine other unsu-

pervised anomaly detection algorithms.

3. Made a preliminary evaluation for a subspace division method, proposed by Evange-

lista [18], to enhance the performance of one-class SVMs in an unsupervised setting;

the original method was evaluated in a semi-supervised setting.

Other contributions include, adopting a parameter tuning method [20], for the spread of

the Gaussian kernel, and verifying its effectiveness. Also, LIBSVM [14] has been extended,

1The modifications presented here are published in the proceedings of ACM SIGKDD Conference [6].
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to support the proposed one-class SVMs formulations. Moreover, a RapidMiner [39] oper-

ator, One Class LIBSVM Anomaly Detection operator, for the unsupervised application

of the proposed algorithms has been implemented. The operator will be included in the

Anomaly Detection extension2.

1.3 Notation

In this section, the common notation used throughout this thesis will be summarized.

Unless otherwise indicated, upper case letters are used to denote matrices and lower case

letters are used to denote constants and vectors. The n× d matrix X refers to the input

dataset, where n is the total number of dataset points and d is the number of features for

each point. Each input instance is denoted by the d-vector xi, while the corresponding

label, for supervised algorithms, is the ith entry of the n- vector y, denoted by yi. The

ones vector, of size n, is referred to as e. The function d : Rd × Rd ← R declares the

selected distance function, where the RapidMiner user has the choice to select various

functions, for example Euclidean and Manhattan distance functions.

The SVM specific notations are pretty much standard. The d-vector w is used to declare

the perpendicular to the decision boundary. The variables ρ and b are used interchange-

ably to denote the bias term. Also, the n-vector ξ refers to the slack variables for each

input instance. For kernel utilization, the function φ : Rd ← Rq is the implicit transfor-

mation function defined by the kernel, K is the n× n kernel matrix and Q is the n× n
matrix, shown by the following equation:

Q = yTKy (1.1)

2Code available at http://code.google.com/p/rapidminer-anomalydetection/.

http://code.google.com/p/rapidminer-anomalydetection/


Chapter 2

Related Work

into Chandola [13] categorized anomaly detection techniques into six categories: classifica-

tion, nearest-neighbor, clustering, statistical, information theoretic and spectral anomaly

detection techniques. Nearest-neighbor and clustering based approaches are the two tech-

niques that are most commonly used in an unsupervised setting. The earlier tends to be

superior in identifying outliers [5].

The broad category of classification based algorithms used to describe any technique that

attempts to learn a model to distinguish between normal and anomalous classes. The

majority of those algorithms operate in a supervised multi-class setting, but there are

some one-class variants that operate in a semi-supervised setting. Classification methods

include Artificial Neural Networks (ANNs), Bayesian Networks, Support Vector Machines

(SVMs) and rule-based methods. In a supervised anomaly detection setting, Mukkamala

et al. [40] showed that SVM based algorithms are superior compared to ANN based

algorithms for the intrusion detection problem. SVMs had a shorter training time and

resulted in better accuracy. The authors stated that the main limitation of SVMs is

the fact that it is a binary classifier only. This limits the breadth of information that

can be obtained about the type and degree of intrusions. Replicator Neural Networks

(RNNs) [25] are a semi-supervised neural network based approach. Here, an artificial

neural network is trained such that the output is a replica of the input. The reconstruction

error is then used as an anomaly score. One-class classification using Support Vector

Machines is discussed in details in Chapter 3. Association Rule Mining [3] generates

rules describing strong patterns within datasets. A support threshold is used to filter

5
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out weak rules. The complexity of classification based techniques is in the training phase

making its testing phase incredibly efficient. Even though multi-class classifiers can have

very strong discriminative powers, they are of limited applicability in our unsupervised

learning setting.

Information retrieval and spectral techniques are among the less eminent categories. In-

formation retrieval models, measures the information content of the data using various

information theoretic methods. The methods include entropy, relative entropy and Kolo-

mogorov complexity. The presence of anomalies often lead to a lengthier and less com-

pact representation. Spectral techniques, such as principle component analysis, project

the data into lower dimensions where anomalies are assumed to be more evident.

In the following sections, unsupervised algorithms from the remaining three categories

will be discussed: nearest-neighbor, clustering and statistical based algorithms. In par-

ticular, the algorithms that are implemented in the RapidMiner [39] Anomaly Detection

extension will be outlined as they are used for comparison in the experiments in Chapter

6. Section 2.4 gives an overview of classical support vector machines. This is essential in

order to grasp the generalization of the techniques used to make one-class SVMs more

robust against outliers.

2.1 Nearest-neighbor based Algorithms

As already mentioned, nearest-neighbor based algorithms are among the best candi-

dates for the unsupervised anomaly detection problem. Nearest-neighbor based algo-

rithms detect outliers using the adjacent points which define a neighborhood. A very

renowned algorithm that determine the degree of outlierness of a point using the distance

is k-nearest-neighbors (k-NN) [47, 7]. Density is the other metric that can be used to de-

tect local outliers, which was first introduced in Local Outlier Factor (LOF) algorithm [9].

Several algorithms branched from LOF to establish a wide variety of local density based

approaches.
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Figure 2.1: k-neighborhood of point p, where k=5. Here, q is the 5th neighbor, thus the
k-distance = d(p,q).

2.1.1 K Nearest-Neighbor (k-NN)

As the name of the often used algorithm implies, the outlier score is depending on the

critical parameter k that constitutes the size of the neighborhood. Figure 2.1 shows the

neighborhood for point p when k is set to 5. A large k-neighborhood indicates that the

point is distant to its neighbors and hence it is more likely to be outlying. The distance to

the kth neighbor is proportional to size of the neighborhood. This distance is referred to

as the k-distance and is used as the anomaly score in [47]. The score used in [7] is more

fit to handle statistical fluctuations as it uses the mean distance to the neighborhood

points. The last scoring method uses equation 2.1.

knn(p) =

∑
o∈Nk(p)

d(p, o)

|Nk(p)|
(2.1)

2.1.2 Local Outlier Factor (LOF)

Local outlier factor objective is to effectively identify local outliers. It uses the k-neighborhood

similar to k-NN, however it uses the relative density for detecting outliers. The example

shown in figure 2.2 can be used to demonstrate what is meant by a local outlier. In

this figure, points o1 and o2 are outlying. An outlier score based on the distance would

identify correctly identify o1 as outlying. On the other hand, it would fail to identify
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Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 2.2: An example[9] demonstrating the difference between local and global ap-
proaches.

o2 as a possible outlier, as the average distance to its neighbors in cluster C2 would be

similar to the average distance to some points within cluster C1. LOF was specifically

designed to handle such cases, by comparing the density of the point to the density of its

nieghbors, point o2 can be successfully identified as outlying.

To achieve the objective of LOF, the local density is defined for each point relative to

its k-neighborhood. The density is inversely proportional to the distance, but in order

to produce a more stable scoring the reachability distance is used instead of the normal

distance. The reachability distance is minimally bounded by the k-distance, its equation

is shown in equation 2.2. The local reachability density is calculated using equation 2.3.

reach-dist(p, o) = max(d(p, o), k − distance(o)) (2.2)

lrdNk(p)(p) =
|Nk(p)|∑

o∈Nk(p)
reach-dist(p, o)

(2.3)

The LOF score 2.4 is then computed as a ratio between the average neighborhood local

density to that of the point. Normal points would have a density greater than or equal to

the average of the neighborhood, scoring a value of 1.0 or less. Outliers on the otherhand,

would have values greater than 1.0.

LOFNk(p)(p) =

∑
o∈Nk(p)

lrdNk(o)(o)

|Nk(p)| · lrdNk(p)(p)
(2.4)
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2.1.3 Connectivity based Outlier Factor (COF)

Connectivity based outlier factor is a local density approach optimized to handle outliers

deviating from low density patterns. It differs from LOF by the density estimation metric;

it uses the weighted average chaining distance instead of the distance. Figure 2.3 depicts

what is meant by a the chaining distance. The chaining distance is represented by the

solid lines.Constructed iteratively, initially with a set containing point p, then augmenting

the set with the closest point to all the elements in the set (this minimum distance is

called “chaining distance “), until all the points in the k-neighborhood is added. The

density is then inversely proportional to the weighted chaining distance, where the points

added earlier contribute with a greater portion. In this example, point p would have a

greater COF score than the points lying on the line.

Figure 2.3: The distances used for COF. Within the k-neighborhood, the chaining dis-
tance showed by the solid line is used instead of the normal distances showed by the
dashed lines.

A line is an example of a low density pattern, Figure 2.4 compares the results of applying

LOF against COF. LOF fails to rank point A among the top outliers, eventhough it does

not concur with the obvious pattern in the dataset.

2.1.4 Influenced Outlierness (INFLO)

Jin el al. [32] proposed another LOF variant. The modification aims at obtaining a

better detection rate in case of interleaving clusters with heterogeneous densities. The

problem in that case is demonstrated in Figure 2.5. The circles in the figure represent
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(a) LOF results (b) COF results

Figure 2.4: The results of applying COF and LOF on a low density pattern. The color
and the size are proportional to the outlier score. Dataset source is [53]

the 3-neighborhood. Point p which belongs to the green cluster has all its neighbors from

the black cluster. Since the black cluster is more dense, p would be labeled as a local

outlier relative to its neighbors. To overcome this, INFLO expands the neighborhood

set to contain the reverse neighbors. The reverse neighbors are those that have point p

in its k-neighborhood set, as shown in figure 2.6. The k-neighborhood and the reverse

k-neighborhood form what is referred to as the influence space (ISk). The local density

for INFLO is calculated relative to the influence space.

Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 2.5: Drawback of k-neighborhood for interleaving clusters. Figure obtained
from [32]

The INFLO is calculated using equation 2.5. By the inclusion of the reverse neighbors in

the score calculation, point q will be labeled as more outlying than point p in figure 2.5,

giving a more reasonable scoring. Similar to local density approaches, outliers would have
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Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 2.6: Reverse neighbors illustration. s, t are in the reverse 3-neighborhood set of
p. Figure obtained from [32].

a score greater than 1.0.

denk(p) =
1

k-distance(p)

INFLOk(p) =

∑
i∈ISk

denk(i)

|ISk|denk(p)

(2.5)

2.1.5 Local Oultier Probability (LoOP)

LoOP [35] incorporates some statistical concepts into the local density based framework,

aiming at obtaining a stronger, more sound anomaly detection algorithm. The LoOP

score is the probability that the point is a local density outlier. Statistical approaches

are typically based on assumptions about the underlying distribution of the dataset.

Even though, LoOp makes two assumptions: points are the center of their neighborhood

sets and that distances follow a Gaussian distribution, those assumptions do not limit

the applicability of the algorithm to any dataset. The earlier assumption is violated by

outliers, which actually produce a positive effect increasing the overall score. The second

assumption constrain the distances and not the data itself. In fact, LoOP is tailored

to handle data from various distributions such as Guassian distribution which is poorly

handled by traditional local density based algorithms.
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2.2 Clustering based Algorithms

Clustering refers to identifying several distinct groups, where each group contains simi-

lar objects [13]. In the context of anomaly detection several clustering based techniques

have been suggested. Some techniques such as DBSCAN [17], ROCK [24] and SNN [4]

explicitly assign the points that do not fit into the clusters as outliers. These techniques

are mainly optimized for identifying clusters and output the outliers as a by product.

The remaining techniques offer a bit more flexibility. They operate on the output of

any clustering algorithms, such as k-means and self organizing maps (SOM). Outliers are

identified relative to the determined clusters; they belong to small and sparse clusters or

are distant from the cluster centroid. Cluster Based Local Outlier Factor (CBLOF), pro-

posed by He et al. [26], is a technique that is based on the latter assumption. Two variants

have been proposed in [5]: u-CBLOF and LDCOF. Those three techniques are compared

with the proposed approaches in this thesis and hence a summary of the techniques is

included.

2.2.1 Cluster Based Local Outlier Factor (CBLOF)

As just mentioned, the underlying assumption of CBLOF is that outliers appear in small

sparse clusters or are on the peripheral of the cluster. This requires a sound way of

labeling clusters into small and large ones. This is achieved by two parameters α and β.

The first represents the ratio of the expected normal data, while the second determines a

threshold for the relative size ratio of large to small clusters. Assume that the clustering

algorithm outputs a set of clusters C. Let Ci represent the cluster which has order i when

sorting the clusters descendingly according to their sizes. LC, SC ⊂ C denote the set of

large clusters and small clusters, respectively. Such a division is equivalent to finding a

integer b such that LC = {C1, . . . , Cb} and SC = C − LC. Using the previously defined

parameters, b should satisfy either Equation 2.6 or Equation 2.7.
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b∑
i=1

|Ci| ≥ |X| · α (2.6)

b 6= l ∧ |Cb|
|Cb+1|

≥ β (2.7)

where l is the total number of clusters.

After identifying the small and large clusters, Equation 2.8 is used in order to calculate

the CBLOF outlier score:

CBLOF (p) =

{
|Ci|min(d(p, Cj)) where p ∈ Ci, Ci ∈ SC and Cj ∈ LC
|Ci|d(p, Ci) where p ∈ Ci and Ci ∈ LC

(2.8)

The outlier score reflects the premises followed by the authors about the nature of outliers.

Since the size of the clusters contribute to the perception of outliers, the distance used in

the score calculation is that of the nearest large cluster (normal cluster). This aspect of

the score computation is demonstrated in Figure 2.7. The size of the associated cluster

is used to incorporate information about the density into the final score.

Figure 2.7: An example to illustrate the computation of the CBLOF outlier score of point
p, which lies in the small cluster C2. p is closer to the C1 than C3, both of which are large
clusters. Thus the distance to cluster C1 is used in the calculation of the outlier score.
The cluster centers are denoted by white points. This figure was used in [5].

2.2.2 Unweighted Cluster Based Local Outlier Factor (u-CBLOF)

The Unweighted cluster based local outlier factor(u-CBLOF) was proposed to commend

the effect of small and large clusters on the CBLOF score [5]. This was achieved by
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eliminating the information about the size of the clusters from Equation 2.8, obtaining

Equation 2.9. u-CBLOF is a global method for detecting outliers. The term ‘local‘ is

attributed to the CBLOF algorithm from which its formula was derived.

u-CBLOF(p) =

{
min(d(p, Cj)) where p ∈ Ci, Ci ∈ SC and Cj ∈ LC
d(p, Ci) where p ∈ Ci and Ci ∈ LC

(2.9)

The strength of the approach in comparison to it CBLOF is highlighted in Figure 2.8.

Two points are labeled: A, B. Point A should be more outlying than point B. However,

this is not the case with CBLOF due to the weighting by the size of the clusters; A

belongs to a small cluster smaller, while B belongs to a large cluster. u-CBLOF is able

to successfully assign a larger score to A.

2.2.3 Local Density Cluster based Outlier Factor (LDCOF)

The Local density cluster based outlier factor (LDCOF) combines between the efficiency

of clustering based algorithms and the strength of local density methods. Also based on

CBLOF, LDCOF attempts to better model the density of the clusters in order to be able

to detect local outliers. The popularity of unsupervised algorithms is governed by the

interpretability of its scores. LDCOF was also designed in such a way that a score greater

than 1.0 indicate that the point is an outlier.

To model the density of the cluster, the average cluster distance is computed using Equa-

tion 2.10. The density is inversely proportional to the computed value.

distanceavg(C) =

∑
i∈C d(i, C)

|C|
(2.10)

The LDCOF outlier score is calculated using Equation 2.11. The points lying in the small

clusters are assigned to the nearest large cluster, and the score is calculated relative to

the density of that cluster.
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(a) CBLOF

(b) u-CBLOF

Figure 2.8: Comparing CBLOF with u-CBLOF on a 2 dimensional synthetic dataset.
The gray level indicates the clusters to which the points belong. The size of the points is
proportional to the outlier score.

LDCOF (p) =

{
min(d(p,Cj))

distanceavg(Cj)
where p ∈ Ci, Ci ∈ SC and Cj ∈ LC

d(p,Ci)
distanceavg(Ci)

where p ∈ Ci and Ci ∈ LC
(2.11)
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2.3 Statistical based

The hypothesis of the statistical based techniques is that data can be modeled us-

ing a stochastic model, where normal and anomalous data would coincide in the high

and low probability regions respectively [13]. Those techniques can be parametric and

non-parametric. The earlier makes assumptions about the distribution of the data.

Histogram-based Outlier Detection (HBOS) [23] is an unsupervised non-parametric algo-

rithms that is also included in our experiments in chapter 6.

2.3.1 Histogram-based Outlier Detection (HBOS)

HBOS assumes independence between features, modeling each feature by a separate his-

togram and the results are aggregated to produce the outlier score. It requires less

computational time that most unsupervised anomaly detection algorithms, making it an

appealing choice for large datasets. Of course this comes at the expense of precision

due to its inability to account for dependencies between features. HBOS address a key

challenge for histogram-based approaches, which is the determination of the size of the

bins [13]. A dynamic bin-width method is followed where the number of items per bin

determines the width of each bin. This solves the problem of having the majority of

the points concentrated in a few bins. The results from each histogram (histi(p)) is

normalized and combined using equation (2.12).

HBOS(p) =
d∑
i=0

log(
1

histi(p)
) (2.12)

2.4 Support Vector Machines

SVMs are traditionally used in binary classification tasks. Given two classes, the objective

of SVMs is to find the hyperplane that has the largest separation margin. This objective

results in a sparse solution as the hyperplane is only affected by the points that are close

to it, the support vectors. The strength of the SVMs stems from the sparsity of its
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solution, its ability to utilize kernels and the fact that the dual objective is a Quadratic

Programming (QP) problem. Moreover, Wang et al. [58] stated that SVMs can be

regarded as a dimension reduction technique enabling it to model higher dimensional data.

On the other hand, Bishop [8] argues that this is not really the case as the features are

dependent on each other and Evangelista [19] notes the degradation in the performance

of one-class SVMs for dimensions greater than 7. In the presence of noise in the training

dataset, the resulting decision boundary is severely affected by the outlying points and

the solution of SVMs lose its sparsity. Several approaches have been suggested to tackle

this problem [51, 60, 59, 28, 34].

2.4.1 Binary Classification

The SVM hypothesizes that the optimal decision boundary is the one that achieves the

maximum separation margin. For a dataset having input vectors xi ∈ Rd and binary

labels yi ∈ {−1, 1}, the learnt decision boundary characterized by w and b should satisfy

the following constraints.

wTxi + b ≥ 1 for yi = 1

wTxi + b ≤ −1 for yi = −1
(2.13)

The points lying at the bound of constraints are called the support vectors. The con-

straints of Equation 2.13 can be combined into a single constraint:

yi(w
Txi + b)− 1 ≥ 0 for all i (2.14)

Equation 2.14 characterizes what is known as a hard margin classifier. These constraints

are not sufficient to effectively handle non-linearly separable data. Introducing positive

slack variables ξi would allow some points to lie on the opposite side of the decision

boundary. This results in Equation 2.15:

yi(w
Txi + b)− 1 + ξi ≥ 0

ξi ≥ 0
(2.15)

Equation 2.16 shows the corresponding minimization objective. The points that affect the



CHAPTER 2. RELATED WORK 18

decision boundary are the support vectors which occur at a distance of 1 from the decision

boundary. Hence the margin becomes 1
‖w‖ , maximizing the margin is equivalent to the

minimization shown in Equation 2.16. The minimization is subject to the constraints in

Equation 2.15.

min w,b,ξ
‖w‖2

2
+ C

n∑
i=1

ξi (2.16)

where C is the regularization parameter.

Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 2.9: Simple example of SVM used for classification. The example is of lusing
linear kernels with the incorporation of soft margin. Figure obtained from [15]

Figure 2.9 depicts the decision boundary learnt by the SVM. As shown in the figure, the

support vectors are the points closer to the decision boundary. They are also the points

that define the decision boundary. The example contains only one error in the positive

class (green), which is handled by the introduction of a slack variable ξ > 2

Solving the objective of SVMs, as shown in Equation 2.16, can be cumbersome due to

the complexity of its constraints. Hence, an alternative equivalent objective derived by

using Lagrange multipliers is typically used by the SVM solvers. Equation 2.17 shows

the corresponding dual objective of Equation 2.16.

minα
1

2

n∑
i,j=1

αiαjyiyjxi · xj −
n∑
i=1

αi,

subject to: 0 ≥ αi ≥ C

n∑
i=1

αiyi = 0

(2.17)
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where αi are the Lagrange multipliers. Handling constraints on the Lagrange multipliers

is much simpler. An additional advantage is that the input vectors only appear in the

form of dot products which paves the road for handling non-linearly separable data.

Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 2.10: Using a kernel to project the data from input space to the feature space.
The data is then separable by a hyperplane in the feature space. Image obtained from
[46].

Data in the input space can be non-linearly separable. This means that using a hyperplane

as a decision boundary would achieve poor results. Figure 2.10 shows an example of such

a dataset. A transformation function φ : Rd 7→ H can be used in order to map the

input into an Euclidean space H. With the existence of various kernels and the objective

shown in Equation 2.17, the transformation function can be implicitly defined by the

kernel where each kernel entry would be equal to K(xi, xj) = φ(xi) ·φ(xj). The right side

of Figure 2.10 shows how the transformation function can help in obtaining a suitable

decision hyperplane. By utilizing the kernel trick the SVM objective can be represented

in a matrix form as follows:

min α
1

2
αTQα− eTα

subject to: 0 ≤ αi ≤ C
n∑
i=1

αiyi = 0
(2.18)

where Q(xi, xj) = yiyjK(xi, xj) and e is a vector, of size n, of ones.
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2.4.2 Sequential Minimal Optimization (SMO)

Sequential Minimal Optimization (SMO) [43] is a technique developed in the late 1990s

that is used to train SVMs. The efficiency of the algorithm and its ability to scale to large

datasets has supported the success of SVMs in many domains. In contrast to the previous

approaches, it uses an analytical step in the inner loop offering a faster alternative than

the traditional Quadratic Programming (QP) problem.

A popular SVM library is LIBSVM [14]. LIBSVM supports SVM implementation for the

tasks: classification, regression and density estimation(One-class SVM). I use LIBSVM

implementation for one-class SVMs, as well as extend it to allow the proposed one-class

formulations: robust one-class and eta one-class. A variant of SMO, proposed by Fan

et al. [21], is used to solve the supported SVM tasks. The Quadratic Problem (QP) for

binary classification and one-class SVM, which has only one linear constraint, has the

following general equation:

minα
1

2
αTQα + pTα

subject to: yTα = δ, 0 ≤ αi ≤ C
(2.19)

The Karush-Kuhn-Tucker (KKT) are the conditions that must be satisfied in the solution

of the QP problem formulated in Equation 2.19. They are summarized as follows.

αi = 0 iff yiui > 1

0 < αi < C iff yiui = 1

αi = C iff yiui < 1

(2.20)

where ui is the output of the SVM for point i .

Based on the theorem proven by Osuna et al. [41], SMO breaks the problem into the

smallest QP subproblem. The smallest subproblem is composed of a pair of Lagrange

multipliers in order to be able to account for the linear constraint. The SVM is iteratively

updated until all points satisfy the KKT conditions of Equation 2.20.

Additional optimization for SMO implemented in LIBSVM include shrinking and caching.
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Shrinking is the process of removing the bounded elements from further consideration

whilst training. Caching is used to store the most recently used kernel rows, which saves

some extra computation. The complexity of the solver using those two optimization

techniques becomes.

• O(iterations ∗ n) if most of columns of Q are cached.

• O(iterations ∗ n ∗ nSV ) if the columns are not cached and each kernel evaluation

cost is O(nSV )

Where n is the dataset size and nSV is the number of support vectors. Hence, the time

complexity is directly depending on the number of support vectors.



Chapter 3

One-class SVMs

The one-class classification (OCC) algorithms learn the model that best describes the

target class. In line with Vapnik’s [56] intuition, the majority of the approaches translate

the problem into finding the optimal boundary characterizing the target class. One-class

SVMs proposed by Schölkopf et al [50] finds that boundary in the form of a hyperplane.

The modifications covered in the following chapter are based on this approach. A hyper-

sphere, enclosing the target class, is minimized by the support vector domain description

(SVDD) [54]. SVDD produce an equivalent solution to one-class SVM in the case of con-

stant kernel diagonal entries [50]. Tailored for the intrusion detection problem, Laskov

at al. proposed the quarter-sphere support vector machines [36]. The technique sets the

center of the sphere to the origin, resulting in a linear programming objective. Liu and

Zheng [38] proposed minimum enclosing and maximum excluding machine (MEMEM)

that incorporates information from the non-target to improve the model learnt by SVDD.

However, the non-target class should be present in the training dataset making it a su-

pervised approach. In this chapter, a detailed description of Schölkopf’s one-class SVM

would be given, followed by an overview of each of the other approaches.

22
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3.1 Motivation

The decision boundary learnt by one-class SVMs isolates the dataset from the origin [49].

Historically, the idea for one-class SVMs dates earlier than traditional SVMs, originating

in 1963 [57]. Further development of the intuition has become only feasible in the 1990s,

with the introduction of kernels and soft margin classifiers.

The existence of the hypothesized decision boundary is assured with the use of the Gaus-

sian kernels [49]. Since the Guassian kernel forms a positive semi-definite matrix, the data

in the features space occupy the same quadrant, assuring the applicability of one-class

SVMs with Gaussian kernels to any dataset.

i
ξ

support

vectors

Figure 3.1: The decision boundary of a one-class SVM for linearly separable data.

The decision boundary learnt by a one-class SVM is shown in Figure 3.1. It separates

the bulk of the data from the origin, allowing only a few points to exist on the other side.

Those points (red), having a non-zero slack variable (ξi), are considered outlying.

Figure 3.2 shows an example of the utilization of a kernel in the one-class SVM. The data

is projected into a higher dimensional space, using the transformation function (φ(·))
implicitly defined by the kernel. There, the one-class SVM finds the optimal decision

boundary, indicated in the figure by the arrow perpendicular to it (w in the equations),

detaching the mass of the data from the origin. Again, only a limited number of points

are allowed to be outlying.
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Figure 3.2: One class SVMs. Figure obtained from [52]

The decision function g(·) for one-class SVMs is defined as follows:

g(x) = wTφ(x)− ρ (3.1)

where w is the vector perpendicular to the decision boundary and ρ is the bias term.

Then, depending on the sign of decision function, normal and outlying points are defined.

The magnitude of the decision function is proportional to the distance to the decision

boundary. Using Equation 3.2, one-class SVM simply output a binary label: normal

when positive, outlying otherwise.

f(x) = sgn(g(x)) (3.2)

3.2 Objective

Equation 3.3 shows the primary objective of the one-class SVM.

minw,ξ,ρ
‖w‖2

2
− ρ+

1

νn

n∑
i=1

ξi

subject to: wTφ(xi) ≥ ρ− ξi, ξi ≥ 0,

(3.3)
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where ξi is the slack variable for point i that allows it to lie on the other side of the decision

boundary, n is the size of the training dataset and ν is the regularization parameter.

The deduction from the theoretical to the mathematical objective can be stated by the

distance to the decision boundary. The decision boundary is defined as:

g(x) = 0. (3.4)

In this context, the distance of any arbitrary data point to the decision boundary can be

computed as:

d(x) =
|g(x)|
‖w‖

(3.5)

Thus the distance that the algorithm attempts to maximize can be obtained by plugging

the origin into the equation yielding ρ
‖w‖ . This can also be stated as the minimization of

‖w‖2
2
− ρ.

The second part of the primary objective is the minimization of the slack variables ξi

for all points. ν is the regularization parameter and it represents an upper bound on

the fraction of outliers and a lower bound on the number of support vectors. Varying ν

controls the trade-off between ξ and ρ.

To this end, the primary objective is transformed into a dual objective, shown in Equa-

tion 3.6. The transformation allows SVMs to utilize the kernel trick as well as reduce the

number of variables to one vector. It basically yields a Quadratic Programming (QP)

optimization objective.

minα
αTKα

2

subject to: 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,
(3.6)

where K is the kernel matrix and α are the Lagrange multipliers.
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3.3 Outlier Score

An outlier score, that shows the degree of outlierness of each point, is more informative

than a binary label such as the output of Equation 3.2. Equation 3.7 is proposed in order

to compute this outlier score. gmax is the maximum value for the decision function, shown

in Equation 3.1. As the value of the decision function is proportional to the magnitude of

the distance to the boundary, the point yielding gmax would correspond to the farthest

normal point from the boundary, hence the least likely to be outlying. All the points

yielding a positive decision function value is by the definition of the one-class normal,

and hence the scoring should reflect. Using Equation 3.7, normal points would obtain a

score of at most 1.0, which is similar to local density based methods [9]. Outliers would

have a score greater than 1.0. In the unlikely situation where all the points produce a

negative decision function score, the score of the least outlying point would correspond

to 2.0.

f(x) =
gmax − g(x)

|gmax|
(3.7)

3.4 Influence of Outliers

The effect of having significantly outlying points, on the decision boundary of a one-class

SVM, is depicted in Figure 3.3. As it can be seen, the anomalous (red) points are the

support vectors in this example, hence they are the main contributors to the shape of

the decision boundary. The mere shifting of the decision boundary, towards the outlying

points, is not as critical as the change in the orientation of the hyperplane, as this affects

the overall rank of the points when using Equation 3.7. In the following chapter, two

methods are proposed in order to make the resulting decision boundary more robust

against the presence of outliers.
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i
ξ

support
vectors

Figure 3.3: Influence of outliers on the decision boundary of one-class SVM. The decision
boundary is shifted towards the outlying points.

3.5 Related Approaches

3.5.1 Support Vector Domain Description (SVDD)

SVDD proposed by Tax and Duin [54] offers a more intuitive interpretation to the one-

class classification problem. It attempts to find the minimum hypersphere that can fit

the data. This formulation has two variables that characterize the hypersphere: R, a,

corresponding to the radius and the center respectively. The slack variables ξi, which was

previously defined, is also part of the objective of SVDD shown in Equation 3.8:

minR,a,ξ R
2 +

1

νn

n∑
i=1

ξi

subject to: (φ(xi)− a)T (φ(xi)− a) ≥ R2 + ξi, ξi ≥ 0,

(3.8)

The transformation using Lagrange multipliers yield Objective 3.9. The only difference

between this objective and one-class Objective 3.6 is in the summation
∑n

i=1 αiK(xi, xi).
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This summation is a constant in the case of radial basis functions (rbf) kernels; they

depend on the radial distance between entries. The solution of both approaches are

equivalent in that case [50].

minα α
TQα−

n∑
i=1

αiK(xi, xi)

subject to: 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,

(3.9)

3.5.2 Quarter-sphere Support Vector Machines

The quarter-sphere support vector machines [36] are tailored in order to better handle

the intrusion detection data. The uniqueness of this application domain is attributed

to distinct properties of its features: one-sided and proximate to the origin [36]. The

first property can be explained by the temporal nature of its features, whilst the second

property is due to data dependent normalization used to process the given numerical

attributes. The approach is a modification of SVDD [54] fitting the data into a quarter

sphere centered at the origin. The proposal yields a much simpler linear programming

Objective 3.10:

minα

n∑
i=1

αiK(xi, xi)

subject to: 0 ≤ αi ≤
1

νn
,

n∑
i=1

αi = 1,

(3.10)

Whilst the advantages of the quarter-sphere method are appealing, it is only suitable for

a specific type of dataset. Linear programming problems are much more efficient to solve

than quadratic problems. The assumptions made about the nature of the input data

limits its application to other application domains.



CHAPTER 3. ONE-CLASS SVMS 29

3.5.3 Minimum Enclosing and Maximum Excluding Machine

(MEMEM)

the minimum enclosing and maximum excluding machine was proposed by Liu and

Zheng [38] to combine the best properties of SVDD [54] and classical SVMs. A SVDD

is able to model members of the class, while rejecting anomalies. In contrast, SVMs are

very powerful in discriminating between both classes. Incorporating information about

the non-target class enables MEMEM to find a better description for the target class.

This is accomplished by learning two concentric hyperspheres. An inner hypersphere

that contains data from the target and an outer one that excludes all members of the

non-target class. This is mathematically modeled by the constraints in Equation 3.11.

‖a− xi‖2 ≤ R1
2 for yi = 1

‖a− xi‖2 ≥ R2
2 for yi = −1

(3.11)

The desired hypersphere should encompass the target class in the smallest sphere in

addition to enlarging the outer sphere to achieve the maximum separation. Figure 3.4

depicts the desired hypersphere which has radius R. Together with the introduction of

the slack variables, the objective can be represented as Equation 3.12. 4R2 represents the

margin, which is equal to double the difference between R2
2 and R1

2. γ is a regularization

parameter that determines the priorities of having a small R1 against a large R2.

minR2,4R2,ξγR
2 −4R2 + C

n∑
i=1

ξi

subject to:

‖a− xi‖2 ≤ R2 −4R2 + ξi for yi = 1

‖a− xi‖2 ≥ R2 +4R2 − ξi for yi = −1

ξi ≥ 0, 4R2 ≥ 0

(3.12)

The introduction of the slack variables introduces an additional constraint 4R2 ≥ 0 to

guarantee that the circles are concentric.

The regularization parameter γ should be adjusted according the weight of the classes in

the training dataset. In case of the absence of negative examples, γ should be set to 1
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Figure 3.4: Discrimination between the two classes for MEMEM. Figure obtained
from [38].

and the solution would be equivalent to that of SVDD. Meanwhile, γ should approach 0

when the dataset is balanced.

The strength of MEMEM comes from the presence of negative examples which makes it

unsuitable for unsupervised learning.



Chapter 4

Enhanced One-class SVMs

As highlighted in Section 3.4, outliers are likely to be the main contributors to the shape

of the decision boundary. In this chapter, two approaches are considered to tackle this

problem. Both approaches are inspired from work done in order to make supervised SVMs

more robust against noise in the training dataset. They have the additional advantage of

maintaining the sparsity of the SVM solution1.

4.1 Robust One-class SVMs

4.1.1 Motivation

The robust one-class SVM, based on Song et al. [51], reduces the effect of outliers by

utilizing the “average“ technique. The Outliers’ effect in average algorithms, such as

Mean Square Error (MSE), is masked by the dominance of normal instances in the data.

Song et al. [51] uses the class center, as averaged information, to obtain an adaptive

margin (slack variable) for each data instance, making the learnt model less sensitive

to outliers. In comparison to standard supervised SVMs, outlined in Section 2.4, the

approach achieved better generalization performance and a more sparse model.

1The work presented here is published in the proceedings of ACM SIGKDD Conference [6].
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As already mentioned, robust one-class SVM employs a different method for calculating

the slack variables. A non-zero slack variable, as shown in Figure 3.1, permits a point to

occur on the other side of the decision boundary. For one-class SVM, the slack variables

are learnt during the training phase. Here, the slack variables are fixed prior to the

training phase, where their upper bound is proportional to the distance to the class

centroid. The altered slack variables are depicted in Figure 4.1. Points that are distant

from the class centroid are more likely to be outlying, hence they are allowed to have large

slack variables. The minimization of the slack variables becomes unnecessary; their values

are computed beforehand. This causes the decision boundary to be shifted towards the

less outlying points, reducing the influence of outliers on the decision boundary. Figure 4.1

shows the resulting the decision boundary, where the outliers (red) are not among the

support vectors.

support 
vectors

centroid

Di

iλD

Figure 4.1: The decision boundary of the robust one-class SVM. Each slack variable is
proportional to the distance to the centroid. The resulting decision boundary is shifted
towards the points closer to the center.

A drawback of robust one-class SVMs is that it loses part of the interpretability of its

results. As the minimization objective is free from the slack variables, there is no restric-

tion on the number of points that are allowed to exist on the opposite side of the decision

boundary. Hence, it is possible that the majority of the points are identified as outliers;

they would have a score greater than 1.0 using Equation 3.7.
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4.1.2 Objective

Equation 4.1 shows the objective of robust one-class SVMs. As explained, the slack

variables are absent from the minimization objective. They still appear in the constraints

as D̂i, having a regularization parameter λ.

min w,ρ
‖w‖2

2
− ρ

subject to: wTφ(xi) ≥ ρ− λD̂i

(4.1)

Equation 4.2 shows how Di, the denormalized slack variable for point i, is computed. Di

is the distance between point i and the class center in the feature space. Equation 4.2 can

not directly be used, as the transformation function is implicitly defined by the kernel.

An approximation for Di, suggested by Hu et al. [31], is used instead. This approximation

is outlined in Equation 4.3. Here, the expression 1
n

∑n
i=1 φ(xi)

1
n

∑n
i=1 φ(xi) is a constant

and thus it can be safely dropped.

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2 (4.2)

Di = ‖φ(xi)−
1

n

n∑
i=1

φ(xi)‖2

= K(xi, xi)−
2

n

n∑
j=1

K(xi, xj)−
1

n

n∑
i=1

φ(xi)
1

n

n∑
i=1

φ(xi)

≈ K(xi, xi)−
2

n

n∑
j=1

K(xi, xj)

(4.3)

In objective 4.1, the value of Di is normalized, by the maximum distance over all points,

Dmax, yielding a value between zero and one. Equation 4.4 shows computation of the

normalized value D̂i:

D̂i =
Di

Dmax

(4.4)

The dual objective of the robust one-class SVM can be summarized as follows: The
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equivalent dual objective of robust one-class SVM is shown in Equation 4.5:

min α
αTKα

2
+ λD̂Tα

subject to: 0 ≤ α ≤ 1, eTα = 1

(4.5)

There is only a small difference between the dual objective of one-class SVM and robust

one-class SVM, shown in Equations 3.6 and 4.5 respectively. These changes can be easily

fed into the QP objective of LIBSVM solver, where p in Equation 2.19 would have the

value of λD̂.

Derivation of Dual Objective

By introducing Lagrange multipliers αi, where 0 ≤ αi ≤ 1, the objective becomes the

maximization of Equation 4.6 over α and ρ:

L =
‖w‖2

2
− ρ−

n∑
i=1

αi(w
Tφ(xi)− ρ+ λD̂i) (4.6)

By taking the derivative of Equation 4.6 with respect to ρ:

∂

∂ρ
L = −1 +

n∑
i=1

αi

n∑
i=1

αi = 1 (4.7)

(4.8)

Taking the derivative of Equation 4.6 with respect to w, yields:

∂

∂w
L = w −

n∑
i=1

αiφ(xi)

w =
n∑
i=1

αiφ(xi) (4.9)

Using 4.7 and 4.9, Equation 4.6 becomes Equation 4.10:
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L = −α
TQα

2
− λD̂Tα

subject to: 0 ≤ α ≤ 1, eTα = 1

(4.10)

4.2 Eta One-class SVMs

4.2.1 Motivation

Unlike robust one-class SVMs, this approach explicitly suppresses the outliers. Adopted

from the approach for supervised SVMs [60], a variable η is introduced to eliminate the

effect of outliers on the training of the SVM. The value of η for outliers would correspond

to zero, omitting the contribution of outliers to the SVM objective.

support
vectors

η=0

Figure 4.2: The decision boundary learnt by Eta one-class SVM. Outliers are identified
by the η value, eliminating their influence on the decision boundary.

The key idea of the eta one-class SVM is depicted in Figure 4.2. Ideally the outlying red

points would have η set to zero and thus they will not affect the learnt decision boundary,

yielding a decision boundary that is insusceptible to outliers.
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4.2.2 Objective

The introduction of the variable η yields the objective shown in Equation 4.11. Here,

the contribution of the points that are likely to be outlying, having a positive value for

ρ − wTφ(xi)), is weighted by η, removing the effect of the detected outliers from the

minimization objective. The unconstrained use of η results in a less intuitive model,

where the number of identified outliers can become large. To handle this, an additional

constraint is added, shown in Equation 4.12, that uses the parameter β to control the

maximum number of outlying points.

min w,ρ min ηi∈{0,1}
‖w‖2

2
− ρ+

n∑
i=1

ηimax(0, ρ− wTφ(xi)), (4.11)

eTη ≥ βn. (4.12)

There are two portions in the objective shown in Equation 4.11: the first is controlled

by w and ρ, and the second controlled by η. Fixing the first portion, yields a linear

problem in η. Whereas fixing η, yields a problem that can be simplified to a quadratic

problem similar to traditional one-class SVMs. This quadratic problem has the objective

shown in Equation 4.13. Unfortunately, the problem as a whole is non-convex. In the

next subsections, two different convex relaxations will be applied to Equation 4.11: The

relaxation into a semi-definite problem similar to the original work of Xu et al. [60], as

well as an iterative relaxation, with a quadratic problem step modeled by Equation 4.13,

as proposed by Zhou et al. [63].

minw,ξ,ρ
‖w‖2

2
− ρ+

n∑
i=1

ξi

subject to: ξi ≥ ηi(ρ− wTφ(xi)), ξi ≥ 0

(4.13)

Equation 4.14 represents the dual objective of eta one-class SVM, for a fixed η:
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minα
αTK ·Nα

2

where N = ηηT

subject to: αTη = 1, 0 ≤ α ≤ 1

(4.14)

Semi-Definite Programming Problem

Relaxing some of the constraints on η results in a semi-definite convex problem. By

allowing η to be a real number between zero and one, the formulation of the objective as

in Equation 4.15, makes it convex in both η and w.

min 0≤η≤1,N=ηηT max0≤α≤1
αTK ·Nα

2
,

subject to: eTη ≥ βn, αTη = 1, 0 ≤ α ≤ 1.

(4.15)

The above equation needs further relaxation, due to the presence of the equality constraint

on N . Relaxing the constraint into N � ηηT , yields a convex objective:

min 0≤η≤1 min N�ηηT max0≤α≤1
αTK ·Nα

2
(4.16)

The semidefinite programming (SDP) objective can be summarized as follows:

minη,δ,γ,σ,Nδ

subject to: eTη ≥ βn, 0 ≤ η ≤ 1, γ ≥ 0, σ ≥ 0,

N � ηηT[
2(δ−eT σ) (γ−σ)T
γ−σ K·N

]
� 0[

1 ηT

γ−σ K·N

]
= 0.

(4.17)
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Iterative Relaxation

Due to the complexity of the SDP solution, Zhou et al. [63] proposed a second solution

that uses concave duality to obtain a multistage iterative procedure. The resulting ob-

jective is composed of a convex and a concave portion, thus the iterative procedure is

a generalization of the concave convex procedure (OCCC) [61], which is guaranteed to

converge. Further explanation on why the presented method produce a good estimation

is presented by Zhang [62].

Concave-Convex Procedure (CCCP) [61] is an iterative discrete time algorithm, appli-

cable to a large class of optimization functions, in order to get the global optimum. In

particular, it is applicable to any function that has a bounded Hessian, as it can be decom-

posed into a convex and concave part [61] . It can be used to understand already existing

algorithms, as well as develop new algorithms. Any function satisfying the mentioned

condition is guaranteed to monotonically decrease to its saddle point.

Proof. Any function E(x), that has a bounded Hessian, can be decomposed into the

summation of a convex Evex(x) and a concave Ecave(x) functions. The iterative procedure

is based on the fact that5Evex(xt+1) = −5Ecave(xt). Exploiting the following properties

of concave and convex differentiable functions.

1. Evex(x
t) ≥ Evex(x

t+1) + (xt − xt+1)5 Evex(x
t+1) (Convexity of Evex)

2. Ecave(x
t+1) ≤ Ecave(x

t) + (xt+1 − xt)5 Ecave(x
t) (Concavity of Ecave)

A simple substitution would lead us to the following conclusion

E(xt+1) ≤ E(xt) (4.18)

Hence the function is decreasing towards its saddle point.

The eta one-class objective, shown in Equation 4.11, is non convex due the regularization:

n∑
i=1

ηimax(0, ρ− wTφ(xi)) (4.19)
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Let g(h(w)) denote this non-convex regularization, where h(w) = max(0, ρ − wTφ(x))

and g(u) = infη∈{0,1}[η
Tu]. The objective shown in Equation 4.11, can be reformulated,

using concave duality, into:

min w,ρ,ηEvex + Ecave

Evex =
‖w‖2

2
− ρ+ ηTh(w), Ecave = g∗(η),

(4.20)

where g∗ is the concave dual of g.

Equation 4.20 can be solved by iteratively minimizing Evex and Ecave. Initially η is set

to a vector of ones. Then the following steps are done until convergence:

1. For a fixed η, solve the objective shown in equation 4.13.

2. For fixed w and ρ, the minimum of Ecave is at:

ui = max(0, ρ− wTφ(xi)),

ηi = I(βn− s(i))

where s(i) is the order of function and I is the indicator function.

Derivation of Dual Objective

By introducing Lagrange multipliers, α and β, Equation 4.13 is equivalent to maximizing

L.

L =
‖w‖2

2
+ eT ξ − ρ− βT ξ −

n∑
i=1

αi(ξi − ηi(ρ− wTφ(xi))) (4.21)

The upper bound on α is determined by taking the derivative of L relative to ξi:

∂

∂ξi
L = 1− βi − αi = 0

βi + αi = 1

Since αi, βi ≥ 0

0 ≤ αi ≤ 1 (4.22)
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Taking the derivative of L relative to the bias term, ρ:

∂

∂ρ
L = −1 +

n∑
i=1

αiηi = 0

n∑
i=1

αiηi = 1 (4.23)

(4.24)

Finally, by differentiating L relative to w:

∂

∂w
L = w −

n∑
i=1

αiηiφ(xi) = 0 (4.25)

w =
n∑
i=1

αiηiφ(xi) (4.26)

(4.27)

By substituting in Equation 4.21, using 4.22, 4.23 and 4.22:

L = −1

2

n∑
i=1

n∑
j=1

αiαjηiηjk(xi, xj)

subject to:
n∑
i=1

αiηi = 1, 0 ≤ αi ≤ 1

(4.28)

4.3 RapidMiner Operator

The three SVM based anomaly detection algorithms were integrated into a RapidMiner

operator, One-class LIBSVM Anomaly Detection Operator, to facilitate their applica-

bility in experiments as well as enable other researchers and analysts to utilize them.

According to KDnuggets 2013 poll [42], RapidMiner ranked first among open source



CHAPTER 4. ENHANCED ONE-CLASS SVMS 41

business analytic solutions. Supporting both, an intuitive powerful graphical user inter-

face and easy integration into other products, RapidMiner is an outstanding data mining

software.

Figure 4.3: One-class LIBSVM Anomaly Detection Operator

The introduced operator is depicted in Figure 4.3. The operator supports the three SVM

based algorithms: one-class SVM, robust one-class SVM and eta one-class SVM. The

parameters of each of those algorithms can be easily adjusted by using the parameter

tab shown in the right side of the figure. The included kernel types are those currently

supported by LibSVM: linear, rbf (Gaussian), polynomial and sigmoid kernels. For the

rbf kernel, the automatic gamma selection method discussed in Section 6.2 is incorporated

into the operator to simplify the usage of the kernel.
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Subspace Division

5.1 Curse of Dimensionality

The curse of dimensionality is a problem that face a lot of machine learning algorithms. It

becomes more evident with higher dimensional data. Anomaly detection algorithms, also

suffer from the effect. The problem arises as distances are used as a similarity measure.

At higher dimensions, all points become approximately equidistant making distances an

insufficient similarity measure.

Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 5.1: Figure shows the ratio of the volume near the surface to the total volume.
Figure obtained from [8]

Figure 5.1 shows the effect of the curse of dimensionality, by plotting the ratio between

42
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the volume that is within ε of a sphere surface to the total volume. It can be seen that as

the dimensionality of the data increase, the majority of the volume is near the surface.

Thus if a point is lying at the center of the sphere all the other points would lie at the

very thin shell near the surface of the sphere, making them all approximately equidistant.

5.2 Solution Overview

Image removed due to missing 
copyright for online publication.

Please obtain image from the 
website stated in the caption.

Figure 5.2: Overview of the subspace division method, where in this example, the original
input is divided into 3 subspaces, each of which is the input to a learning machine. The
final score is the result of the combination of the three subspaces. Figure source is
Evangelista [18].

An approach was employed by Evangelista [18] in order to overcome the curse of di-

mensionality, after observing that the performance of the one-class SVMs applied in a

semi-supervised manner deteriorates for dimensions greater that 7. The author suggested

the approach depicted in Figure 5.2. The mahalanobis scaled dataset is divided into inde-

pendent subspaces, each of those subspaces are fed as an input to the learning algorithm.

Finally, the output is a combination of the output from each subspace. This approach can

automatically filter out the bad classifiers on the fly leading to a total result improvement.

In the following sections, the intelligent subspace division is going to be discussed as well

as the different methods for combining classifier results. The approach was originally

proposed for a semi-supervised application, thus the expected differences in classifier

combination are highlighted for the unsupervised anomaly detection problem.
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5.3 Division into Subspaces

To obtain the best results of subspace division, it is preferable to have subspaces that

measure different aspects of the data. In mathematical terms, this would correspond to

independent subspaces. The number of possible subspaces is combinatorial. This means

that given 21 dimensions and 3 subspaces, the possible number of subspaces approaches

1 billion. Therefore, finding the optimal subspace division becomes a challenging task.

Equation 5.1 shows the possible number of subspaces. Here, d is dimensionality of the

dataset, and k is the size of each subspace.

(
d

k

)(
d− k
k

)
. . .

(
2k

k

)
(5.1)

A genetic algorithm (GA) can be used in order to get a suboptimal solution. Genetic

algorithms are inspired by biological systems. They start with a random population of

chromosomes, where each chromosome represents a possible solution. Figure 5.3 shows an

example of a chromosome for a problem with 26 variables and the objective is to divide

the problem into 3 subspaces. Each of the genomes represents a feature index. The

first 9 variables would be assigned to the first subspace, the second 9 to the second and

so forth. Each of the chromosomes have a fitness that represents how independent the

subspaces are. The chromosomes are selected for breeding according to their fitness, the

elitist chromosome is always passed to the next generation. Then, genetic crossover and

mutation is applied to yield a new population. The algorithm is repeated for a specific

number of evolutions.

In theory, the bigger the population size and the evolution number the more likely we

would reach a better solution. However, this comes at the expense of the time complexity.

The complexity is proportional to number of evolution and p ∗ log(p), where p is the

population size.

There are two heuristics that were used to measure the independence of the subspaces:

Principle Component Analysis (PCA) [29] and Kendall [33] Division.
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Figure 5.3: A chromosome representing a possible division into 3 subspaces. Illustration
obtained from [18].

5.3.1 Principle Component Analysis Division

Independence between subspaces, using the PCA method, is measured by the correlation

between the principle components of each subspace. A smaller correlation is desirable as

it indicates that the subspaces are independent.

The fitness of the solution is calculated using equation 5.2, where ρi,j represents the

correlation between the principle components of subspace i and j. The objective is to

find the subspace division with the smallest correlation, which is ideally zero, making the

the principle of each of the subspaces orthogonal.

min max|ρi,j| ∀i 6= j (5.2)

5.3.2 Kendall Division

The Kendall division is a non-parametric measure that uses ranks among subspaces to

calculate their independence. The points are ranked in each subspace according to the

distance to the subspace centroid. The aim is to obtain a different rank in each subspace,

ensuring that each subspace measures a different aspect of the data.

Equation 5.3 shows how the fitness is computed. W is the fitness value, the smaller it is,
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the bigger the independence between the subspaces.

S =
n∑
i=1

((
l∑

j=1

Ri,j

)
− l(n+ 1)

2

)2

W =
12S

l2(n3 − n)

(5.3)

where Ri,j is the rank between point i and subspace j center distance wise, n is the size

of the dataset, and l is the number of subspaces.

The complexity of the approach is O(l ∗n2 ∗D), where D is the complexity of computing

the distance function.

5.4 Combining Classifier Result

In [18], an extensive study of pseudo ROC curves was carried out to discover the behavior

of various aggregators. The author investigated the effects of the minimum, maximum,

average and product aggregators. The initial output of the classifiers was mapped into

the interval [0, 1], such that the combination would correspond to a fuzzy logic operator.

The score is mapped such that a small score would indicate that the point is outlying in

that subspace.

Each subspace has two outputs; a parametric and a non-parametric score. The non-

parametric score corresponds to the order of the point relative to the remaining dataset.

In case of the ROC oerformance criteria, the non-parametric score is solely counts. How-

ever, incorporation of information about the distribution of the dataset might be helpful;

this information can be obtained from the parametric score.

T-norms is a fuzzy logic operator that is equivalent to the conjunction in first order

logic. T-norms are used when the system should be cautious about false negatives. The

minimum aggregator works well under the assumption that there are some poor classifiers

that should not be considered in the final result. Taking the minimum eliminates the

results from those classifiers without knowing in advance that they are poor.
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T-conorms in fuzzy logic is equivalent to the disjunction in first order logic. It is used

when the system should be cautious about false negatives. Studies of pseudo roc curves

revealed that the maximum aggregator creates poor separation between the positive and

negative instances making it a poor choice as an aggregator. The average aggregator is

a powerful tool when the predictive power of each of the classifiers is equally strong. It

creates two normal distributions for the positive and negative instances.

A contention parameter was included in the combination method. Contention is taken

into account when the results of the algorithms are too variant. In that case, more caution

should be taken whilst reaching a final output. The median is used as a combination

metric in case the contention of a data point exceeds the specified threshold.

For unsupervised anomaly detection, I believed that the maximum aggregator would work

best. The reason for that stems from the assumption that the outlying records deviate

significantly from the normal records. Hence a maximum aggregator would label the

points as outlying only if the points are labeled as outlying in all subspaces. This was

supported by the experiments that were performed.
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Experiments

6.1 Performance Criteria

The output of the anomaly detection algorithms is a continuous score which is propor-

tional to how outlying the points are. Evaluating such scores depends on the rank of

the outliers in the dataset. Two closely related performance criteria that are used in the

literature are the Receiver Operator Characteristic (ROC) and the Precision Recall (PR)

curves. A ROC curve is constructed by plotting the false positive rate against the true

positive rate, whilst a PR curve plots the recall against the precision. A PR curve can be

easily constructed from the data of a ROC curve [16]. This section will give an overview

on both criteria. For SVM based anomaly detection algorithms, the number of support

vectors gives an indication on the complexity of the model learnt and on the computation

time of the algorithms.

Table 6.1: Confusion Matrix

actual positive actual negative

predicted positive True positives (TP) false negatives (FN)
predicted negative False Positives (FP) true negatives (TN)

The objective of the anomaly detection algorithm is to correctly identify the outliers

from the remaining normal points. Varying a threshold over the outlier score would label

48
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some points as outlying. Each threshold would yield a corresponding confusion matrix.

Each matrix has four entries as shown in Table 6.1. True positives (TP) corresponds to

the points that were correctly identified as outlying. Normal points that are incorrectly

labeled as outlying are called false negatives (FN). The second row correspond to the

points that were labeled as normal. Again, they can either be correctly or incorrectly

labeled referring to true negatives (TN) and false positives (FP) respectively. The metrics

used by the ROC curve are the true positive rate and the false positive rate. The earlier

represents the ratio of outlying points that were correctly classified, while the latter

correspond to the ratio of the normal points that were incorrectly classified as outlying.

PR curve plots the recall against the precision. The recall is equivalent to the true

positive rate. Precision shows the ratio of correctly predicted outliers to the total number

of predicted outliers. The calculations used for the metrics are shown in Equation 6.1.

True positive rate =
TP

TP + FN

False positive rate =
FP

FP + TN

Recall =
TP

TP + FN

Precision =
TP

TP + FP

(6.1)
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Figure 6.1: Receiver Operator Characteristic (ROC) curve. Figure obtained from [2]

Figure 6.1 demonstrates the characteristics of the ROC curve. Ideally, all the outlying
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points would have an outlier score greater than the normal points. In that case the true

positive rate and false positive rate would be 1.0 and 0.0 respectively, yielding a ROC

curve passing through the perfect classification point (upper left corner). The resulting

area under the curve (AUC) would be equal to 1.0. The ROC curve of a completely

random algorithm is also shown the figure. A random algorithm would have an AUC of

0.5. Therefore the area under the ROC curve is a good indication on the performance

of the algorithm, where it can be interpreted as the probability that an outlying point

would be ranked higher than a normal point. However, attention should be paid when

using the AUC as an overall performance indicator as the different parts of the ROC

curve might have varied importance depending on the application [2].

Image removed due to missing 
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Figure 6.2: Precision Recall (PR) curve. Figure obtained from [2]

An example PR curve is shown in figure 6.2. A perfect anomaly detection algorithm would

detect all outliers with perfect precision. This would correspond a recall and precision

of 1; a single point in the upper right corner. In contrast to the ROC curve, PR curves

are not strictly monotonic. This is due to the fact that varying the decision threshold

dynamically affect the denominator of the precision. A random algorithm would maintain

a low precision independent of the recall. The area under the curve (PR-AUC) can also

be used as a performance indicator.

Even though ROC and PR curves are closely related, together they can offer a more

comprehensive understanding of the performance of the algorithm. The ease of the in-

terpretation of the ROC curve gives it an edge over the PR curve [2]. However as noted

by Davis and Goadrich [16], the PR curve is more insightful particularly in imbalanced

datasets (similar to any dataset satisfying the unsupervised anomaly detection assump-

tion). For datasets having a majority of the negative class, an increase in the number of
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false positives would cause a limited change in the false positive rate as it will be masked

by the large number of negative instances. This would provide a highly optimistic ROC

curve.

6.2 Gamma Tuning

Gamma is the parameter that determines the spread of the Gaussian kernel. It is a

crucial parameter that affects the SVM training. It is typically adjusted in a supervised

setting using validation. It can also be adjusted by solving a fisher linear discriminate

model [58]. In an unsupervised setting this problem becomes more challenging due to

the absence of class labels. An approach suggested by [20] tries to automatically tune

gamma independent of the training process.

The kernel entries in an unsupervised setting represent the similarity between the dataset

points. It is desirable to have diverse entries in accordance to the fundamental premise

of pattern recognition:

(K(xi, xj)|(yi = yj)) > (K(xi, xj)|yi 6= yj) (6.2)

The values for the kernel entries for large γ approach zero, yielding an over-fitted decision

function. In the case where γ is too small, the kernel values approach 1, which yields a

poorly defined decision function. The objective is to maintain the majority of the entries

between 0.4 and 0.6.


1.0 0.4 · · · 0.6

0.4 1.0 · · · 0.3
...

...
. . .

...

0.6 0.5 · · · 1.0



This can be achieved by maximizing the following objective function:

s2

K̄ + ε
(6.3)
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K(xi, xj) = e−γ·‖xi−xj‖

K̄ =

∑l
i=1

∑l
j=i+1K(xi, xj)

l

s2 =

∑n
i=1

∑n
j=i+1 (K(xi, xj)− K̄)2

l − 1

where l is the number of non-diagonal entries, K̄ and s correspond to the average and

the standard deviation of the non-diagonal entries of the kernel matrix.

The variance of the non-diagonal elements is always smaller than the its mean yielding a

global maximum for the optimization objective.

Gradient ascent is used in order to determine the optimal gamma value. The proper

initialization of gamma and the learning rate are crucial for fast convergence. The pa-

rameters were chosen dynamically according to the dataset to ensure ease of use.

The disadvantage of this approach is its time complexity. Each gradient ascent iteration

has a complexity of O(n2) forming a huge bottleneck in the performance of SVMs.

6.3 Datasets

Datasets from the UCI machine learning repository [22] are used for the evaluation of the

anomaly detection algorithms. Most of the datasets of UCI repository are traditionally

dedicated for classification tasks. Hence they have to be preprocessed in order to serve for

the evaluation of unsupervised anomaly detection algorithms. This is typically performed

by picking a meaningful outlying class and sampling the outliers to a small fraction [5].

Table 6.2 summarizes the characteristics of the preprocessed datasets.

The ionosphere dataset is composed of radar signals which are used to predict whether

there is a consistent structure in the ionosphere. The structure could either be good or

bad. The outlier class was chosen to be bad and 8 records were sampled using stratified

sampling to produce the processed dataset.
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Table 6.2: Summary of datasets information. Classes that are selected as outliers are
downsampled to satisfy the assumption of unsupervised anomaly detection.

Meta-data ionosphere shuttle breast-cancer satellite

Size 351 58000 569 6435
Attributes 26 9 30 36
Outlier Class(es) b 2 ,3 ,5 and 6 M 2,4 and 5
Processed Dataset Size 233 46464 367 4486
Outliers Percentage 3.4% 1.89% 2.72% 1.94%

The shuttle dataset is composed of various observations during the launching of space

shuttles. Similar to Reif et al [48], the outlier classes were chosen to be 2, 3, 5 and 6.

They were also sampled using stratified sampling, keeping only 878 outliers.

The features of breast-cancer represent the characteristics of breast masses. There are

two possible classification benign (B) and malignant (M). Intuitively the malignant class

should be the outlier class as the majority of the masses are benign. Only the first 10

malignant records were kept similar to [35].

The satellite dataset consists of 3x3 sections of a satellite multi-spectral image. The label

of each record represents the classification of the central pixel. Similar to [12], the three

smallest classes were chosen as the outlier class: 2, 4 and 5. Those classes were filtered

out except of 87 records that were chosen using stratified sampling.

The preprocessing was also performed using RapidMiner. For ionosphere, shuttle and

satellite, stratified sampling was used to reduce the number of outliers (for reproducibility,

the pseudo random generator seed was set to 1992).

6.4 Results

In this section, the performance of all the proposed one-class SVMs is compared against

the nine standard algorithms that were revised in Chapter 2. The experiments were

conducted using RapidMiner [39], where all of the algorithms are implemented in the
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Anomaly Detection extension1.

Table 6.3 shows ROC AUC results of the algorithms investigated. For a more complete

analysis, Figures 6.3 and 6.4 show the ROC curves and PR curves respectively. In each

figure, the three SVM based algorithms are plotted with the best algorithm in terms of

AUC from each category. The number of support vectors of the SVM based algorithms

are shown in table 6.4. The average CPU execution time of the algorithms over 10 runs

is shown in Table 6.5.

Table 6.3: Comparing the ROC AUC of SVM based algorithms against other anomaly
detection algorithms

Dataset One-class Robust one-class Eta one-class k-NN LOF COF INFLO LoOP Histogram CBLOF u-CBLOF LDCOF

ionosphere 0.9878 0.9956 0.9972 0.9933 0.9178 0.9406 0.9406 0.9211 0.7489 0.3183 0.9822 0.9306
shuttle 0.9936 0.9597 0.9941 0.9208 0.6072 0.5612 0.5303 0.5655 0.9889 0.8700 0.8739 0.5312
breast-cancer 0.9843 0.9754 0.9833 0.9826 0.9916 0.9888 0.9922 0.9882 0.9829 0.8389 0.9743 0.9804
satellite 0.8602 0.8861 0.8544 0.9003 0.8964 0.8708 0.8592 0.8664 0.8862 0.4105 0.9002 0.8657

In terms of AUC ROC, Table 6.3 shows that all SVM based algorithms perform generally

well on all datasets. For ionosphere and shuttle the eta one-class SVM is even superior.

For the breast-cancer dataset, SVM based algorithms score on average. For the satellite

dataset, where also many support vectors have been found, results are below the average.

Studying Figures 6.3 and 6.4 gives more insight into the results. Eta one-class SVM

performs best on the ionosphere dataset. It dominates in both, in the ROC and the PR

space (except for a small portion of PR space between the recall of [0.6, 0.7] where robust

one-class outperforms it), as shown in Figures 6.3a and 6.4a. It is also the best performing

algorithm for the shuttle dataset in the ROC space, as shown in Figure 6.3a. However, the

histogram approach clearly dominates in the PR space, shown in Figure 6.4b, followed

by robust one-class SVM. Figure 6.4d shows that eta one-class and u-CBLOF are the

dominating curves in the PR space of satellite dataset up until a recall of 0.3. In fact

they have perfect precision which means that 26 out of 87 outliers were ranked highest

by the algorithms. It is interesting to note that KNN the superior algorithm in the ROC

space performs very poorly in the PR space. The results of the breast-cancer dataset are

depicted in Figures 6.3c and 6.4c. Here, INFLO, which is a local density nearest-neighbor

based method, performs best. Examining the AUC results given in Table 6.3 shows that

the performance of SVM based algorithms on this dataset is comparable to k-NN. This

could possibly be an indicator that SVM based algorithms are error-prone in detecting

1Available at
http://code.google.com/p/rapidminer-anomalydetection/

http://code.google.com/p/rapidminer-anomalydetection/
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local outliers.

Tables 6.4 and 6.5 give room for further analysis of the performance of SVM based

algorithms. In general, the proposed SVM modifications, robust one-class and eta one-

class SVMs, produce a sparser solution. This has the advantage of avoiding over-fitting

and having a simple model. In addition, there is a possible improvement in the time

efficiency, which is especially apparent with large datasets, shuttle and satellite. The eta

one-class SVM is not efficient for small datasets due to the iterative nature of its solver.

Table 6.4: Number of support vectors of SVM based algorithms

Algorithm ionosphere shuttle breast-cancer satellite

One-class 106 21374 144 2085
Robust One-class 116 5 90 385
Eta One-class 37 8 48 158

Table 6.5: CPU execution time of SVM based algorithms

Algorithm ionosphere [ms] shuttle [s] breast-cancer [ms] satellite [s]

One-class 21.55± 0.26 747.15± 10.94 48.72± 1.01 14.02± 2.00
Robust one-class 33.82± 0.26 218.93± 3.17 57.27± 2.29 8.60± 0.06
Eta one-class 27.48± 0.25 4.07± 0.14 82.46± 0.42 12.35± 0.95
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Figure 6.3: ROC curves for SVM based algorithms and existing approaches. For the
latter, the best performing algorithms of the categories nearest-neighbor, statistical and
clustering based are plotted
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6.5 Subspace Division

The technique proposed by Evangelista [18] has never been investigated in an unsuper-

vised setting. There are several questions that need to be addressed in order to better

understand the approach in our context:

• Does subspace division produce an improvement in the performance over the tra-

ditional application of the algorithm?

• Is intelligent subspace modeling necessary for the effectiveness of the technique?

• Are the results of genetic algorithms relatively stable over different runs?

In the following subsections, the suggested questions are briefly investigated using the

satellite dataset. This dataset was used for investigating subspace division as it has 36

attributes. Also, it is a large dataset, with 87 outliers, and the best AUC obtained for

SVM based algorithms was 0.8861, which leaves a significant room for improvement.

To answer the first question, the performance of the SVM based algorithms is compared

with and without subspace division. Figure 6.5 shows the corresponding ROC curves.

The number of subspaces used by the division algorithms were 4. Introducing subspaces

improved the performance of one-class and eta one-class SVM, where the first showed a

trivial improvement in the AUC ROC by 0.002 and eta one-class SVM produced a better

improvement by 0.01 .

Verifying the importance of intelligent subspace selection is crucial to justify the added

computational complexity. Two other division methods were investigated in addition to

PCA and Kendall division as described in Section 5.3: Subspace Outlier Ensemble using

1-dimensional subspaces (SOE1) and a dataset dependent division. SOE1 was suggested

in [27] as a simple division method to verify the effectiveness of subspace division for

outlier detection. As its name implies it uses subspaces containing only 1 dimension. The

last division method, which is a dataset dependent division, uses some porperties of the

dataset to create meaningful subspaces. The satellite dataset describes a multi-spectral

image and hence a possible division is on a channel basis yielding 4 subspaces. This

method was included to verify that not just any division would improve the results.
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Figure 6.5: ROC curves for SVM-based algorithms with subspace division of satellite
dataset. Kendall division was used for one-class and Robust one-class subspace selection.
PCA division was used for Eta One-class SVM.

Figure 6.6 shows the ROC curves for the various division methods. For all the algorithms,

the intelligent subspace division produced better results than the other division methods.

The simple division methods yielded results that are worst than running the algorithms

normally without division. Verifying the importance of having intelligent selection of

subspaces.

Genetic Algorithms (GA) which are used for intelligent subspace selection are non-

deterministic. Hence different runs might yield different results. To enable reproducibil-

ity of the experiments, a pseudo random generator can be used; fixing the seed of the

generator would produce the same results. To be able to verify the strength and the ap-

plicability of the approach, it is desirable to have similar performance over different runs.

Table 6.6, 6.7, 6.8 and 6.9 show the results of repeating the division 10 times and the

corresponding statistics. The combination of the results of the different subspaces was

using the non-parametric score with contention. The first two tables used the maximum

aggregator, while the others used the minimum aggregator. The best AUC of the runs is

better than running the algorithm without division, however the average is worst. There

are no significant differences between the division methods.
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Table 6.6: Results of PCA division with maximum aggregator.

Algorithm 36 var Average range r-coefficient

One-class 0.8602 0.8605±0.0081 [0.8474;0.8793] -0.4953
Robust One-class 0.8861 0.8793±0.0082 [0.8613;0.8980] -0.4482
Eta-one-class 0.8544 0.8520±0.0112 [0.8313;0.8787] -0.3466

Table 6.7: Results of Kendall division with maximum aggregator.

Algorithm 36 var Average range r-coefficient

One-class 0.8602 0.8606±0.0059 [0.8438;0.8704] 0.3159
Robust One-class 0.8861 0.8762±0.0057 [0.8625;0.8902] 0.1847
Eta-one-class 0.8544 0.8531±0.0077 [0.8363;0.8676] 0.0625

Table 6.8: Results of PCA division with minimum aggregator

Algorithm 36 var Average range r-coefficient

One-class 0.8602 0.8618±0.0105 [0.8434;0.8874] -0.3210
Robust One-class 0.8861 0.8790±0.0070 [0.8631;0.8906] -0.3588
Eta-one-class 0.8544 0.8465±0.0139 [0.8156;0.8821] -0.2708

Table 6.9: Results of Kendall division with minimum aggregator.

Algorithm 36 var Average range r-coefficient

One-class 0.8602 0.8617±0.0078 [0.8437;0.8769] 0.2351
Robust One-class 0.8861 0.8789±0.0046 [0.8698;0.8883] -0.2665
Eta-one-class 0.8544 0.8524±0.0127 [0.8215;0.8756] 0.3326

Both of the division methods are based on the premise that the more independent sub-

spaces are superior in outlier detection. Thus in theory, if the GA ran for infinite evo-

lutions it would reach the fittest division and hence the best solution. So to verify the

premise, the Pearson r-coefficient between the fitness of the division and the resulting

AUC was calculated that should unfold any linear correlation. The premise should result

in a r-coefficient approximately equal to -1 (smaller fitness indicates a more indepen-

dent solution). The PCA division yielded a better coefficient as it had the correct sign.

However, all the correlations are weak as there magnitude is less that 0.5.
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Figure 6.6: ROC Curves for different subspace division methods
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6.6 Gamma Values

In an unsupervised setting, the task of parameter selection becomes increasingly diffi-

cult. In the experiments, the parameter tuning method described earlier in Section 6.2.

The method resulted in the γ values as shown in Table 6.10. As the parameter tuning

algorithm is quiet expensive, this section is dedicated to showing its importance.

Table 6.10: Tuned γ values

Data Set γ

ionosphere 9.182 · 10−1

shuttle 2.627 · 10−6

breast-cancer 3.655 · 10−4

satellite 5.170 · 10−4

Figure 6.7 shows the result of varying gamma on the ROC AUC value. For all datasets,

the tuned gamma produces very good results for the three algorithms. The importance

of the gamma selection is especially evident in the ionosphere dataset shown in Fig-

ure 6.7a, where the parameter tuning algorithm managed to select the best gamma for

both: one-class SVM and robust one-class SVM.
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Chapter 7

Conclusion

The experiments demonstrated the competence of SVM based algorithms, in detecting

outliers, in an unsupervised anomaly detection setting. According to the ROC AUC,

which is the most popular evaluation criteria for anomaly detection, SVM based algo-

rithms are even superior on two out the four datasets. The strong theoretical foundation

of SVMs enabled it to perform reasonably well on all the datasets. Even for the satellite

dataset, where the SVM based algorithms were outperformed in terms of the ROC AUC

by the algorithms in the other existing categories, the proposed eta one-class SVM was

clearly a very good candidate for detecting the top outliers, shown by its dominance in

the PR space.

The eta one-class SVM has shown the greatest potential among the one-class SVM for-

mulations. It is capable of maintaining the sparsity of the SVM solution, whilst perform-

ing best on most datasets. Concerning the second proposed enhancement, the robust

one-class SVM produced a more sparse solution than one-class SVM, however in terms

of the performance, the off-the-shelf one-class SVM is still superior.

Applying the subspace modeling approach for SVM based algorithms in an unsupervised

setting has shown no improvement in the results. The methods investigated for selecting

subspaces were non-deterministic and on average they performed worse than the algo-

rithms applied on the full input space. There are couple of reasons that might have

contributed to the disappointing results. First, it has been argued that SVMs are already

robust against the curse of dimensionality [58]. In light of that argument, the approach

68
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might work using other unsupervised anomaly detection algorithms; you can not fix what

was not broken. Second, several researchers have questioned the applicability of the ROC

as an evaluation metric in highly skewed data [16]. Thus, an alternative performance cri-

teria might be able to better judge the effectiveness of the approach. Also, having several

subspaces makes the parameter selection an impossible task. Whilst the gamma was au-

tomatically tuned with and without division, other critical parameters, such as the ν for

one-class SVM, were selected for the normal application of the algorithms using a quick

grid search, which is inapplicable with the increasing number of subspaces. It should also

be noted that the evaluation included only one dataset, which is definitely not enough to

omit the approach altogether.

One of the major advantages of SVMs is its time complexity, attributed to the sparsity

property. Unfortunately, the tuning of gamma for the Gaussian kernel similar to [20],

has a quadratic time complexity, which forms a major bottleneck in the performance of

SVMs.

The breadth of the presented work opens several directions for future research. The first

direction is regarding SVMs for unsupervised anomaly detection. The Gaussian kernel is

only one example of the wide class of kernels called Radial Basis Function (RBF) kernels.

Some of those kernels might be better suited for the problem at hand, thus it is worth

investigating. Also, further analysis of the critical parameters of the proposed methods,

λ for robust one-class SVM and β for eta one-class SVM, is essential in order to provide a

foundation as strong as that provided by the classical one-class SVM. Regarding subspace

division, it will be interesting to see the results of the approach using other unsupervised

anomaly detection algorithms. In general, more experiments need to be implemented,

using both real and synthetic datasets, to support the reached outcomes.

To conclude, SVM based algorithms have exhibited great potential for unsupervised

anomaly detection. In particular, the eta one-class SVM is a very attractive choice for

investigation when applying unsupervised anomaly detection in practice.
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[36] Pavel Laskov, Christin Schäfer, Igor V. Kotenko, and Klaus-Robert Müller. Intrusion

detection in unlabeled data with quarter-sphere support vector machines. Praxis der

Informationsverarbeitung und Kommunikation, 27(4):228–236, 2007.

[37] Jessica Lin, Eamonn Keogh, Ada Fu, and Helga Van Herle. Approximations to magic:

Finding unusual medical time series. In In 18th IEEE Symp. on Computer-Based

Medical Systems (CBMS, pages 23–24, 2005.

[38] Yi Liu and Yuan F. Zheng. Minimum enclosing and maximum excluding machine

for pattern description and discrimination. Pattern Recognition, International Con-

ference on, 3:129–132, 2006.

[39] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale (now: Rapid-

miner): Rapid prototyping for complex data mining tasks. In Proc. of the ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2006), 2006.

[40] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural networks

and support vector machines. Proc. of the 2002 Int. Joint Conf. on Neural Networks.

IJCNN’02 (Cat. No.02CH37290), pages 1702–1707, 2002.



BIBLIOGRAPHY 74

[41] Edgar Osuna, Robert Freund, and Federico Girosi. An improved training algorithm

for support vector machines. In Neural Networks for Signal Processing [1997] VII.

Proceedings of the 1997 IEEE Workshop, pages 276–285, 1997.

[42] Gregory Piatetsky. Kdnuggets annual software poll, June 2013.

[43] John C. Platt. Advances in kernel methods. chapter Fast training of support vector

machines using sequential minimal optimization, pages 185–208. MIT Press, Cam-

bridge, MA, USA, 1999.

[44] M. Pontil and A. Verri. Support vector machines for 3d object recognition. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 20(6):637–646, 1998.

[45] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection with unlabeled

data using clustering. In In Proc. of ACM CSS Workshop on Data Mining Applied

to Security (DMSA-2001), pages 5–8, 2001.

[46] Amar S Kapoor Rakesh Kaundal and Gajendra PS Raghava. Machine learning

techniques in disease forecasting: a case study on rice blast prediction. BMC Bioin-

formatics, 2006.

[47] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for

mining outliers from large data sets. In Proc. of the 2000 ACM SIGMOD Int. Conf.

on Management of Data, SIGMOD ’00, pages 427–438, New York, NY, USA, 2000.

ACM.

[48] Matthias Reif, Markus Goldstein, Armin Stahl, and Thomas M. Breuel. Anomaly

detection by combining decision trees and parametric densities. 2008 19th Interna-

tional Conference on Pattern Recognition, pages 1–4, December 2008.

[49] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C

Williamson. Estimating the support of a high-dimensional distribution. Neural

computation, 13(7):1443–71, July 2001.

[50] Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, and

John C. Platt. Support vector method for novelty detection. In Advances in Neural

Information Processing Systems 12, (NIPS) Conf., pages 582–588. The MIT Press,

11 1999.



BIBLIOGRAPHY 75

[51] Qing Song, Wenjie Hu, and Wenfang Xie. Robust support vector machine with bullet

hole image classification. Systems, Man and Cybernetics, Part C, IEEE Transactions

on, 32(4):440–448, 2002.

[52] Kyoko Sudo, Tatsuya Osawa, Kaoru Wakabayashi, and Hideki Koike. Detecting the

degree of anomaly in security video. IAPR Conference on Machine Vision Applica-

tion, pages 53–56, 2007.

[53] Jian Tang, Zhixiang Chen, Ada Fu, and David Cheung. Enhancing effectiveness of

outlier detections for low density patterns. In Ming-Syan Chen, Philip Yu, and Bing

Liu, editors, Advances in Knowledge Discovery and Data Mining, volume 2336 of

Lecture Notes in Computer Science, pages 535–548. Springer Berlin / Heidelberg,

2002.

[54] David M. J. Tax and Robert P. W. Duin. Support vector domain description. Pattern

Recognition Letters, 20:1191–1199, 1999.

[55] Joost van Beusekom and Faisal Shafait. Distortion measurement for automatic doc-

ument verification. In Proc. of the 11th Int. Conf. on Document Analysis and Recog-

nition. IEEE, 9 2011.

[56] V. Vapnik. Statistical learning theory. Wiley, 1 edition, September 1998.

[57] V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.

Automation and Remote Control, 24:774–780, 1963.

[58] Wenjian Wang, Zongben Xu, Weizhen Lu, and Xiaoyun Zhang. Determination of

the Spread Parameter in the Gaussian Kernel for Classification and Regression.

Neurocomputing, 55(3-4):643–663, October 2003.

[59] Yichao Wu and Yufeng Liu. Robust truncated-hinge-loss support vector machines.

JASA, 2007.

[60] Linli Xu, K Crammer, and Dale Schuurmans. Robust support vector machine train-

ing via convex outlier ablation. Proc. of the National Conf. On Artificial Intelligence,

pages 536–542, 2006.

[61] Alan Yuille and Anand Rangarajan. The concave-convex procedure (CCCP). In

Advances in Neural Information Processing Systems 14. MIT Press, 2002.



BIBLIOGRAPHY 76

[62] Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. J.

Mach. Learn. Res., 11:1081–1107, March 2010.

[63] Xi-chuan Zhou, Hai-bin Shen, and Jie-ping Ye. Integrating outlier filtering in large

margin training. Journal of Zhejiang University-Science C, 12(5):362–370, May 2011.


	Introduction
	Introduction
	Contributions
	Notation

	Related Work
	Nearest-neighbor based Algorithms
	K Nearest-Neighbor (k-NN)
	Local Outlier Factor (LOF)
	Connectivity based Outlier Factor (COF)
	Influenced Outlierness (INFLO)
	Local Oultier Probability (LoOP)

	Clustering based Algorithms
	Cluster Based Local Outlier Factor (CBLOF)
	Unweighted Cluster Based Local Outlier Factor (u-CBLOF)
	Local Density Cluster based Outlier Factor (LDCOF)

	Statistical based
	Histogram-based Outlier Detection (HBOS)

	Support Vector Machines
	Binary Classification
	Sequential Minimal Optimization (SMO)


	One-class SVMs
	Motivation
	Objective
	Outlier Score
	Influence of Outliers
	Related Approaches
	Support Vector Domain Description (SVDD)
	Quarter-sphere Support Vector Machines
	Minimum Enclosing and Maximum Excluding Machine (MEMEM)


	Enhanced One-class SVMs
	Robust One-class SVMs
	Motivation
	Objective

	Eta One-class SVMs
	Motivation
	Objective

	RapidMiner Operator

	Subspace Division
	Curse of Dimensionality
	Solution Overview
	Division into Subspaces
	Principle Component Analysis Division
	Kendall Division

	Combining Classifier Result

	Experiments
	Performance Criteria
	Gamma Tuning
	Datasets
	Results
	Subspace Division
	Gamma Values

	Conclusion
	References

