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Abstract

An increasing number of freely accessible adult content websites arose recently, displaying a
wide variety of different offensive images and videos. Since many users do not want to be
confronted with such material, automatic tools to detect and filter these images and videos
are needed. Additionally, tools are required to protect children from accessing offensive web-
sites. This thesis presents approaches for both classification of offensive images and videos.
For the first, two different approaches are presented and evaluated on a variety of differ-
ent datasets showing real world Web content. One traditional method is based on detecting
and describing skin areas, while the other uses the popular bag-of-visual-words model. Video
classification is based on keyframes and additional motion features, including periodicity
detection. Evaluation of these techniques is done on offensive Web videos and inoffensive
YouTube videos. The results show that the bag-of-visual-words approach is better suited for
classifying offensive material than traditional skin features. Also, combining keyframe clas-
sification with additional motion features improves the performance of detecting offensive
videos. Overall, a classification accuracy of 99% on images, and 94% on videos is reached.
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Chapter 1

Introduction

This work deals with the classification of offensive material based on visual information.
Hereby, offensive material include all kinds of adult-content, or pornographic images and
videos. The focus lies on just the visual informations, so no additional text, or audio features
are included in the classification process. A system which is able to block these kinds of
images and videos would be beneficial, since more and more offensive material shows up and
can be accessed by everyone, even by accident. A more detailed description and motivation
for this work is presented in the following section. The successive sections cover previously
published work on this topic, divided into the classification on images, and videos, as well
as a section about skin detection, since it plays an important part in this task.

For the classification of offensive images, two methods are presented. One is based on de-
tecting skin areas in an image and using simple features to describe these areas. The second
approach uses the bag-of-visual-words method, which became recently popular and showed
already good performance for image classification. Both are evaluated on a previously pro-
posed dataset, downloaded offensive images, and inoffensive images from different sources,
including Flickr, and normal Web images. Video classification is divided into keyframe
based classification, and the incorporation of additional motion features. These features are
evaluated on offensive Web videos and YouTube videos for the opponent class.

The further chapters are organized as follows: the second chapter covers theoretical
background of the underlying methods, as well as the used classifiers: the decision tree, and
the support vector machine (SVM). Chapter three presents the different approaches, while
in chapter four the used datasets are explained. Also the experiments and their results
are described in that chapter. Chapter five is a conclusion of this work and an outlook of
possible future work is given there as well.

1.1 Motivation

The ever increasing amount of Web traffic makes it possible to find much different porno-
graphic material in the Internet. Nowadays there is a huge offer of different, freely available,
pornographic or offensive images and videos. This becomes an ever rising problem, since
many users do not want to be confronted with such material. It is even more important
to guard children from offensive material since it is very easy to accidentally visit websites
that host these. Therefore, a system which is able to detect offensive images might be very
beneficial.

One of the first problems which arise, is the definition of which image might be regarded
as offensive and which not. The definition mainly depends on the culture, the country
and its laws, and one’s personal views. For example, in Germany it is common to see
naked female breasts on cover of magazines, and in TV commercials. However more strict
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16 CHAPTER 1. INTRODUCTION

and religious cultures may find this offending. Figure 1.1 shows some images that may be
offensive depending on the culture’s view. The first image (Figure 1.1(a)) shows a woman
with partly transparent clothes under a shower. In most European countries this image
would not be regarded as an offensive image by most adults. But parents might not want
their young children to see such an image. The second image (Figure 1.1(b)) displays a
bare breasted woman. Again this image may not be offensive in everybody’s view. The
third image (Figure 1.1(c)) shows people having sex, which clearly states it as an adult
image which should not be viewed by children. In this work, a common sense view is
applied regarding the definition of offensive. An image is therefore offensive (if not stated
otherwise), if it contains (partly) naked sexual organs including female breasts, or if it
shows sexual actions. Inoffensive images are all images, that are not offensive. Because the
definition of offensiveness is not trivial, a possible requirement for a system that blocks these
images is flexibility. It should be able to be tuned for different personal or cultural needs.

Most of the existing systems that deal with Web content filtering are based on one of
the following approaches: black- , or whitelists, keyword scanning, and rating systems [13].
Blacklists are lists of websites that contain unwanted material and therefore are blocked.
This is an efficient way to block material from these sites, but a big disadvantage is the
amount of work that is needed to keep these lists up to date. Everyday new websites come
up and it is nearly impossible to keep track over all the websites. Whitelists, in contrast,
contain only websites that are known to be clean. The same disadvantage as for the blacklists
applies, too. It is nearly impossible to get a list of all available websites. One might only rely
on the pages he has visited so far, but this might restrain him from finding new interesting
websites. Keyword scanning is a technique, that scans a website for certain keywords. If
one keyword is found, the site is blocked. The advantage of this method is in its simplicity.
Offensive websites, for example, might contain the word “breast”. So a website is regarded
as offensive, if the word “breast” is found. This might also apply on websites that deal with
breast cancer. Also such a mechanism can easily be fooled by swapping characters in the
word. “Braest”, for example, could not be recognized anymore. A rating system allows either
the owner of a website, frequent visitors of the site, or an independent third party to rate
the page’s content. The rating then can be used for filtering purposes. However, there are
various disadvantages of this approach. First, such rating information may not be available
for all websites. Second, it is not assured that this information may be always reliable,
especially if the information is user generated or given by the owner. There exist also more
sophisticated text based classifiers of offensive websites. They basically try to learn frequent
occurring words on websites with different classifiers like support vector machines, neural
networks, or nearest-neighbor [13, 21, 27, 47]. A general disadvantage of these methods is,
that there are not able to filter websites, that only contain images. Since the actual images
are what has to be blocked, a system that can recognize offensive images only based on the
visual information would be of great benefit.

Another reason for a system that just operates on images, is that other possible appli-
cations exist that are not just for blocking images from websites. One possible application
could be to help police forces to find offensive images on hard disks. Since the available
storage capacity on disks increased drastically over the last years, more and more pictures
may be stored locally. Some of the offensive images might be illegal and a tool that quickly
scans a hard drive and finds all possible offensive images might be beneficial, since not all
images have to be searched manually.

Video streams also benefited form the increasing Web traffic. More online portals arise
where videos can be viewed over the Internet, for example YouTube1. YouTube allows users
to upload their own videos and to share them with everybody else. However, it is not wanted
that users upload offensive videos as YouTube explains in their Community Guidelines2. The

1http://www.youtube.com
2http://www.youtube.com/t/community guidelines
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(a) (b) (c)

Figure 1.1: Samples of images that might be offensive depending on the personal view: a)
might be regarded as offensive only in very strict cultures, b) might be regarded as offensive
in some cultures, c) should be regarded as offensive in most cultures

portal uses a community based approach to find videos that contain unwanted scenes. Users
can report films that, in their view, violate the guidelines. It is possible to set a flag which
tells that a video may be inappropriate for an underage person to view. However, this is not
a real age certification, since everybody with an YouTube account can view these videos. A
system that automatically detects videos that show sex and nudity might therefore lead to a
better recognition of offensive material on such online portals. Additionally, there exist also
similar portals that focus on offensive video streams. Again, there is not much protection
from these sites and a system which can detect offensive videos might be beneficial to protect
children.

Videos can be seen as a set of images. Using this, the detection of offensive films could
be done by extracting meaningful frames out of the video stream. Then classify these
keyframes and if they are offensive, label the video as offensive, too. However, video streams
also include other information which further might be used to improve the classification
process. Possible features might be evolved out of the motion or the audio stream.

The goal of this work is to present a system that is able to classify images into offensive
and inoffensive ones. The system is afterwards extended to video data. The following
sections present some recent work on the detection of adult images and the detection of
adult videos.

1.2 Related Work

This section presents some of the approaches for the detection of offensive visual material
that already exist. It is divided into three parts. In the first part methods for the classi-
fication of offensive images are presented. Many of these methods share the same general
approach whose first step consists of some skin detection technique. Because there exist
several methods of detecting skin, in the second part some comparative results of previ-
ous works, are presented. The last part covers additional methods for the classification of
offensive videos.

1.2.1 Classification of Offensive Images

Since most of the offensive images show naked people or parts of naked people, an intuitive
approach would be to find skin areas in an image and do a classification of the resulting skin
area. Skin itself consists mainly of melanin and blood and because of that the dominating
colors are red, brown, and yellow [34]. Therefore skin color could be easily distinguished
from other materials. However, some matters complicate the detection of human skin. First,
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the skin color may share a common source, but it is also very spread around different races.
So there are many combinations from very dark, over brown, red and yellow, to very bright.
Second, different illumination sources may change the appearance of skin color and may lead
to even blueish or greenish tones. Also the skin area might be desaturated or shadowed,
which leads to a much darker or brighter appearance. Finally, there exist various materials
like rock, wood, fur of animals, or some kinds of metal whose color resembles the color of
human skin. This may lead to areas in the background of images, which may be classified as
skin. Some methods that try to cope with these problems and distinguish images between
offensive and not are presented in this section. The following section describes some other
results regarding skin detection, mainly the underlying methods and choices of color space
that also play an important role.

The first approach for the classification of offensive images was presented by Forsyth and
Fleck in 1996 [17]. This approach aims to find naked people in pictures by first extracting
large skin regions and then try to match the skin regions to cylindrical shapes. These shapes
are grouped to form human limbs which are further grouped to form bodies. To solve the
problem of detecting skin in an image, the authors transform the R,G,B color values into
the log-opponent values I,Rg, By. The idea behind this transformation, is to make the Rg

and By values independent from the intensity value which is represented with the green
color value. The skin filter itself consists of a set of rules that mark pixels as skin, whose
color values are in a certain, manually defined range. Because skin is usually soft it has
only little texture. So areas are additionally marked as skin, if their texture amplitude is
small. Due to the skin’s reflectance, small gaps within the skin regions may occur. To avoid
these gaps, the output of the skin filter is expanded so that adjacent regions are included,
if the deviation of their color values is small. The skin regions are then analyzed to find
cylindrical shapes, since most parts of the human body can be represented in that way. To
achieve this, first, edge detection is performed to find sets of connected edge curves. A set
is denoted cylindrical, if a straight axe can be put through it. The cylinders that are found
are afterwards grouped into possible human limbs by using a set grouping rules. For exam-
ple, two cylinders may form a limb, if their axes intersect and the average width of both
is similar. Further rules are used to find girdles, thighs or spines. If a body can be found
in this way, the picture is regarded as being offensive. For experiments 565 pictures that
contain naked people are used and 4,289 pictures with different motifs. The people were
mostly Caucasians, some were Africans or Asians. The authors claim to achieve a recall rate
of 43% with a precision of 57%. The skin filter achieved a recall rate of 79% and a precision
of 48%. So the whole algorithm could successfully extract 43% of the test images but only
4% of the control images.

Another approach was presented by Ze Wang et al. in [45] and called WIPETM (Wavelet
Image Pornography Elimination). This method consists of five steps which include icon de-
tection, graph/photo detection, color histogram analysis, texture analysis and shape match-
ing. The icon filter checks if the length of any side of an image is small. If this is the case
the image is categorized as benign. Images that pass the icon filter are rescaled so that the
longest side has 256 pixels. This is mainly done to save computation time in the successive
steps. The second step aims to detect whether an image is a photograph or a graph. If it is
a graph, it is likely that it is not offensive. To do this, the image is partitioned into blocks
where each block is classified as graph or photo. If the percentage of one class exceeds the
other, the whole image is classified as this class. The classification is based on the analysis of
wavelet coefficients in high frequency bands, because artificial images tend to have sharper
edges than photographs. The authors claim that the RGB color histograms of offensive
images have a different color distribution than inoffensive images. For the analysis the RGB
color space is partitioned into 512 bins. Also a color range that resembles human skin color
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was defined manually. With that color range a weight for each color in the histogram is
set, expressing its probability of belonging to skin. By summing over the whole histogram,
a weighted amount of human body colors can be obtained. Finally, a threshold is used to
decide to which class the image belongs. The following step analyzes the texture of the ar-
eas in which skin color was detected. The histogram of high frequency bands of the wavelet
transform is analyzed and if an area contains many high frequencies it is classified as not
being skin.

The final step analyzes the shape of the extracted skin regions. First, an edge map of the
image is constructed by applying a wavelet transform to construct an edge map for vertical,
horizontal and diagonal edges each. The three edge maps are combined to form the final
edge map. To describe the shapes in the edge map the normalized central moments up to
order five are computed and the seven translation, rotation and scale invariant moments de-
fined by Hu [19] are used as well, giving a feature vector of length 28. The feature vectors of
the training images are stored in a database. To classify new images, the Euclidean distance
to the existing feature vectors is calculated. If the vector is close to an existing one, the
image is classified as offensive. For training, 500 offensive images were downloaded from the
internet and 8,000 benign image were used from various sources. Testing was performed on
1,076 objectionable and 10,809 benign images, achieving a true positive rate of 96% with a
false positive rate of 9%.

Jones’ and Rehg’s work [22] is focused on the detection of human skin. They claim that
skin color is separable in the color space and that a model for skin detection that is based on
the color distribution can be built if a training set of sufficient size is used. The model they
built is based on 1 billion labeled training pixels gathered from the internet. The decision
the classifier takes is only based on the RGB values of a pixel and is based on Bayes rule.
The probability of a pixel belonging to skin P (skin | rgb) is estimated with histograms over
the color space.

Histograms with size of 32 bins lead to a classification rate of 80% with a false positive
rate of 8.5% or 90% classification rate with a false positive rate of 14.2%. Most of the
false positives are from wood, rock or copper colored materials while highly saturated or
shadowed skin also fails. They also compared the histogram based model to a mixture of
16 Gaussian functions to represent the skin color region. The histogram model achieved
slightly better results.

After skin detection, simple features that are based on the skin areas are used to classify
offensive images. These features include:

• percentage of pixels detected as skin

• average probability of skin pixels

• size in pixels of the largest connected component

• number of connected components

• size of the image

A neural network classifier was trained on 5,453 pornographic images and 5,226 non-pornographic
images. The classifier achieved 85.8% correct detections and 7.5% false positives on gathered
images from web crawls. Most of the false positives were portrait images. Finally additional
text-based features were combined into the classifier. These features are just a list of ob-
jectionable words that are found on a website matched against the image label. The final
classifier achieved a classification rate of 93.9% with a false positive rate of 8.0%.
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Harvey and Smith present another approach for finding skin color in [9]. They compared
five different color spaces for this: RGB, HSV, normalized RGB, Log opponent, and compre-
hensive. For the training 140 images were used. If necessary, the pixels are first transformed
into the target color space. The resulting skin color cluster is then normalized using Princi-
pal Component Analysis (PCA) [37]. This forms a cluster of skin color points in the whole
color space, which is centered around the origin. To determine if a pixel belongs to skin,
it first has to be transformed into the right color space. Afterwards it has to be projected
into the transformed skin color space in which the distance to the origin is calculated. If it
is lower than a given threshold θ, the pixel is denoted as skin. The results for the different
color spaces show, that the choice of color space is not critical regarding the classification
performance. However, the approach has a general drawback, since the transformation with
PCA takes some computational time. To speed this up, a lookup table is proposed, which is
similar to Jones approach [22]. Histograms are used to create a likelihood score for a color
belonging to skin. The authors also mention another problem, the occurrence of isolated
pixels which are associated with the background although they belong to skin and vice versa.
To remove these pixels, a region growing algorithm is used.

For classification three features are used which try to capture the skin areas. The features
are: the ratio of the skin area to the whole image area, the ratio of the area of the largest skin
segment to the whole image area, and the number of segments in the picture. A k-nearest
neighbor classifier is used which achieved around 55% correct classifications. To improve
these results, the integration of additional text features is proposed. These features are
for example tags (meta information), title, or descriptive commentary for the image. The
reason for this approach is to be able to better distinguish between images that are actual
pornographic and images that are used for educational purposes. With the help of textual
features the filtering rate could be improved to 70%.

The work of Harvey and Smith was further improved in [5]. Since they used little data
for classification in their first paper, they extended their data and also used more classes
which include the following: pornography, nudity, people, portraits, graphical images, and
miscellaneous. Each category contained around 1800 pictures. To detect skin in the images,
they use the approach from their first paper [9]. For classification, four different classifiers
are compared: generalized linear model, k-nearest neighbor, multi-layer perceptron (MLP)
and support vector machine (SVM). Five features are used which include: the fractional area
of the largest skin blob, the number of skin segments, the number of colors in the image,
the fractional area of the largest skin blob, and the fractional area that is accounted for by
a face. The results show that the MLP worked best.

Zheng et al. [51] focus on shape-based detection of offensive images. The first step is
the skin detection, where a multi-Bayes classifier is used. This classifier aims to capture
the varying illumination conditions in the image scenes. A k-means clustering is performed
to group the sample images into different clusters according to the average brightness and
average chromaticity. For each cluster a skin probability map (SPM) is built following the
approach of [22], with additional values for chromaticity and illumination. A pixel is denoted
skin if P (Skin | R,G,B,L, T ) ≥ θ, where L is the average brightness and T the average
chromaticity. After skin detection, the regions are refined, using morphological operations.
For the following shape-based classifier different features are used to capture the shape
of the skin region, which was found in the first step. Three simple shape descriptors are
eccentricity (the length ratio between the major and minor axes of the object), compactness
(the ratio between the object’s boundary and the object’s area), and rectangularity (the ratio
of the object’s area to the area of the object’s bounding box). Further descriptors are the
seven normal moment invariants (Hu’s moments) which are invariant to translation, scale
and rotation and the Zernike moments. For the actual classification of shapes the authors
compared the following as weak classifiers: Decision Stump, C4.5, SVM and MLP, which are



1.2. RELATED WORK 21

boosted with AdaBoost to improve the results. The use of a boosted C4.5 classifier achieved
the best results with a true positive rate of 89.2% and a false positive rate of 15.3%.

The authors present further research results in [49] which result in a system they call Im-
age Guarder. They focused again on a skin detection followed by a classification of the skin
areas. The skin color detection works similar to their first approach, but the chromaticity
is omitted for the skin model and the illumination is presented only by three levels: dark,
normal, and bright. The texture of areas which match skin color is validated afterwards
with a first order statistic texture descriptor. The local variance is used to measure the
smoothness of the region in a moving window. If the variance is below a threshold the
region is classified as skin. Only if a skin region is detected, the image will be processed
further. Otherwise it will be classified as benign. In the following step different features
for color, texture and shape are used for classifying adult images. Color features include
the mean of skin color probability and variance, texture features include texture contrast
and coarseness. The shape is described by skin region area, the region edge intensity and
the Zernike moments [46]. The classification is performed by a SVM. The results achieve a
precision of 76.5% for adult and 95% for benign images, performing slightly better than a
C4.5 classifier.

Another approach was proposed by Rowley et al. in [35] which is used in Google’s
adult-content filtering mechanism being integrated in Google’s search engine. Since a basic
requirement for the use of a filter in a search engine is speed, they focused mainly on the
processing speed of the approach which is the main reason they did not use shape descriptors.
Also many of the following features are computed in a region of interest (ROI), which is
a rectangle centered in the image, the size of 1/6 of the original image dimensions on all
sides. Two kinds of features are distinguished: skin-dependent features and skin-independent
features. To get the skin region in the ROI, the skin color model from Jones and Rehg [22]
is used. That model is combined with Bayes rule to construct a skin probability map using
a prior of 20% for skin color. For refinement of the map, morphological operations erosion
followed by dilation are performed, which is done to reduce noise and gaps. The mean
and standard deviation of the skin map in the ROI are then used as features. In the next
step, connected component analysis is performed on a binarized version of the skin map,
where the probability of skin is higher than 50%. The used features include the number of
connected components, mean and standard deviation of the skin map within the connected
components and the compactness of the connected components. These features aim to
capture the compactness of body parts compared to the background of images that may
contain skin color. After connected component analysis, the texture of the skin regions is
analyzed. To get an approximation of the texture the Canny edge detector is applied to the
gray-scale image. The following ratios are used as features. The first one gives a measure
of the skin texture:

number of edge pixels in connected component in ROI
number of pixels in connected component in ROI

(1.1)

while the second one is a measure of how much of the image texture can be attributed to
skin-colored pixels:

number of edge pixels in connected component in ROI
number of edge pixels

(1.2)

Since some materials that are recognized as skin have long, straight edges (e.g. wooden
doors, bricks), the last skin-dependant feature is the number of distinct lines, that are found
in the image.

The skin-independant features are used to describe properties of pornographic images,
that cannot be covered with color information. The first set of three features describe general
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image shape and size information. First, images that are smaller than 10 × 10 pixels the
following features are not computed since these pictures are too small. A flag is used to
express this case. The other two features are log of the number of pixels in the ROI, and
the aspect ratio of the image. A useful indicator for classification between offensive and
inoffensive images could be the detection of artificial images like graphs. The entropy of the
intensity histogram can be used to express this:

−
255∑
i=0

P (i) · log2(P (i)) (1.3)

where P (i) is the fraction of pixels in the image with intensity i. If an image has fewer
distinct intensities present, it is more likely that this picture is an artificial one. The next
set of features is used to describe the clutter in the image. An edge detection is used for
this again. The features are the fraction of pixels in the ROI that belong to an edge, and
the fraction of edge pixels of the whole image that are in the ROI. Finally a face detection
is performed on the image, since it is a good indication for the presence of a person in an
image. The number of faces in the picture and the fraction of skin pixels of the image that
belong to the largest face are used as features. The classifier they used is a support vec-
tor machine. The training set consisted of 812 pornographic and 16,488 non-pornographic
pictures. The test set had the size of 1,331 adult and 50,629 non-adult pictures. All of
this images were gathered with Web downloads. The classification achieved a true positive
rate of 50% with a false positive rate of 10%, or 90% true positives with 35% of false positives.

Arentz and Olstad presented an approach for classification of whole websites into offen-
sive and inoffensive ones [3]. The decision is based only on the pictures contained on the
site, not taking additional text features into account. The authors use the assumption that
a website only displays pictures that are from one class. Therefore a website is classified
as offensive, if the number of pornographic images Ω > N

2 , where N is the total number of
images on the website. The authors show that under their assumption, the probability to
misclassify a website is rather low, since X > N

2 images have to be wrongly classified. The
classification of single images is mainly based on skin detection with shape description of
skin areas. First, the RGB pixel values are transformed into YCbCr color space. A skin color
range can be defined which represents the skin color and in the initial filtering process all
pixels outside this color range are rejected. The remaining pixels are grouped into connected
components. For each component the color histograms for Cb and Cr values are calculated.
Also, a robust second-order texture descriptor is calculated, to describe the smoothness of
each component. The next step aims to describe the component’s shape which is done by
a clockwise tracing of the outer borders of the component and storing the distance to the
centroid. Afterwards a Fourier Transformation is performed on the normalized distance
array and the first 28 coefficients are kept. All four descriptors are combined to a single
feature vector, which are presented to a genetic algorithm for training. For the training
575 non-offensive images were used and 365 offensive ones were gathered by searching the
web for English female names. The classifier achieved 92.1% correct classification rate on
the training images and 89.4% on the evaluation set, which included 500 offensive and 800
inoffensice pictures. Portrait images are hard to classify correctly since they are similar to
adult images. Of 20 websites (10 for each category) all were classified correctly.

Yoo introduced an intelligent adult image retrieval and rating system (AIRS) in [48]
which uses a database that stores many offensive and inoffensive images. To decide whether
a new image is pornographic or not, the ten most similar pictures are retrieved from the
database. If the majority of these pictures is offensive, the new image will be classified as
offensive as well. AIRS consists of three layers. The first is the query processing layer, the
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second the indexing layer, and the third the model database layer. In the query process-
ing layer the MPEG-7 descriptors [30] are extracted for the query image. The descriptors
include the edge histogram descriptor, the color layout descriptor, and the homogenous tex-
ture descriptor. The distance between the new feature vector and the ones in the database is
calculated. The indexing layer extracts the ten most similar images from the database, and
a simple majority rule determines the class of the new image. The database layer contains
four different kinds of pictures: pictures with naked female breasts, pictures with male or
female genitals, pictures with explicit sexual actions, and inoffensive pictures. The system
achieves a true positive rate of 99.25% with a false positive rate of 23%.

Kim et al. present an approach that can distinguish between five classes from inoffen-
sive to offensive images [25]. They claim that in different cultures different kinds of images
are perceived as being offensive, therefore systems are needed that can easily adapt to the
required level of detection. The authors built a dataset with about 1700 pictures from each
of the following classes: swim suit images (can be regarded as offensive in very strict cul-
tures), topless images (can be regarded offensive in school environments), nude images (are
likely regarded as offensive in many cultures), sex images (are regarded as offensive in most
cultures), and normal images. For feature description, the MPEG-7 descriptors are applied
which include Color Layout, Color Structure, Edge Histograms, Homogenous Texture, and
Region Shape. Combinations of these descriptors are tested as well. The classification is
performed by a neural network classifier, where the input layer consists of as many nodes as
the descriptors dimension and the output layer consists of five nodes, one for each class. The
network contains also two hidden layers with 50 nodes each. The results show that the Color
Layout descriptor performs best for single descriptors, while the combination of Homoge-
nous Texture with Color Layout works best for the combinations. The authors claim that
the Color Layout may be the best feature for adult vs. normal image classification and the
Homogenous Texture may be the best feature for swimsuit vs. topless image classification.

The most recent approach is presented by Deselaers et al. in [12]. In opposition to the
other approaches which are mainly based on skin detection, they use a bag-of-visual-words
(BOVW) model. These models are adapted from text classification in which a document
can be described by the number of different words that are contained in the text. The same
idea is adapted for images which can be represented by a number of patches that are then
described with some kind of local descriptor. The first step of that approach is to create a
vocabulary for the specific task that is built out of a training set of images. The authors
use image patches which are extracted around difference-of-Gaussian interest points. These
patches are then transformed by PCA and the first 30 coefficients are used for description
of the particular patch. The main purpose of this is to reduce the dimensionality. The
authors also claim that the direct use of the patches is more appropriate than the use of
SIFT features, since color information is included. The creation of the vocabulary is done
by a training of Gaussian mixture models which is able to capture frequently occurring
patterns in the training data. Since an image is represented by a set of local features and
each feature is described by an identifier of the closest Gaussian density, a histogram over all
identifiers for each image is created. This histogram can be used as a feature vector for the
following classification. Support vector machines and log-linear models are compared for the
classification task. To get a better comparison to other approaches, they test their methods
on the dataset that was presented in [25]. Following the idea of creating a system that is able
to distinguish between different classes of offensive images, they also adapt a filtering rule.
This rule allows to define which categories are regarded as offensive and the system filters
the images belonging to these categories. The results show that the system can distinguish
between the pornographic and inoffensive images without many misclassifications, while
the classification of other categories is harder. Also the support vector machine performed
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slightly better than the log-linear model. The authors compared the system on images that
were downloaded from the Web. These images were harder to classify than the images of
the dataset.

Table 1.1: Performance of different adult image detecting systems reported by their authors
in the given paper. The best results achieved the BOVW approach with a high true positive
and the lowest false positive rate.

Method TP FP
Skin detection + geometrical features [17] 42.7% 4.2%
WIPETM [45] 96% 9%
Bayesian SPM with NN [22] 85.8% 7.5%
Bayesian SPM with NN and text [22] 93.9% 8%
Bayesian SPM with SVM [35] 50% 10%

90% 35%
Image Guarder [49] 76.5% 5%
AIRS [48] 99.25% 23%
Bag-of-visual-words with PCA and SVM [12] 99.02% 0.05%

In summary, most of the approaches just use skin detection, followed by shape description
and a classification that is based on features, that are extracted in the steps. While these
methods seem to work well, the most recent one using a bag-of-visual-words outperforms
the skin detection based methods according to the authors. An overview of the performance
can be found in Table 1.1. However, these rates are reported by the authors themselves and
therefore cannot be directly compared to each other. This is one major problem regarding
the research on classification of adult images. Because there does not exist some kind of
standard dataset which allows researchers to compare their systems. Each of the authors
use their own data which they mostly downloaded from the Internet. Unfortunately, there
does not exist a survey which compares the different methods on the same data.

1.2.2 Comparison of Different Skin Detection Techniques

The previous section presented some of the existing methods for classifying offensive images.
While most are based on finding human skin in the image, there exist different methods to
do so. Skin has some properties that should make it possible to distinguish skin color from
the color of other materials. Some researchers try to transform the pixel values into another
color space, hoping that the separability between skin and non-skin increases. Because skin
has a high reflectance its color may appear different under varying lightning conditions [2].
To cope with this, another idea is to drop the illumination component. This topic has been
discussed in the literature. Since it may be vital for the success in detecting offensive images,
the results from other researchers are presented in this section. Three surveys are mentioned
which use different metrics to evaluate the use of color spaces under different methods.

Shin et al.[36] evaluated the following color spaces: RGB, normalized RGB, CIEXYZ,
CIELAB, HSI, SCT, YCbCr, YIQ, and YUV. For each color space the illumination compo-
nent was dropped in additional experiments. They claim that a transformation into a color
space other then RGB is a pre-processing step whose goal is to increase the separability
between skin and non-skin pixels while at the same time the separability between different
skin tones should be decreased. The experiments were performed on a dataset of 805 images.
Images that contain skin are from the AR and the UOPB face datasets while images with no
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skin pixels are from the University of Washington’s content-based image retrieval database.
Two different kinds of measures are used. One is based on a scatter matrix and the other one
on histogram comparison. The scatter matrix based metric include the scatterness within
and between clusters. The histogram comparison calculates the intersection between skin
and non-skin pixel color histogram and the histogram χ2 error. The results show that the
RGB color space performed best in most of the experiments. Further results show that the
dropping of the illumination component did not improve the separability but it decreased
the separability in 3 out of 4 measurements.

Another comparison of different skin color detection methods was performed by Vezh-
nevets et al. [42]. In contrast to Shin’s work, they compared different color spaces and
different detection methods simultaneously. The color spaces include RGB, normalized
RGB, HSV, TSL, and YCbCr. The goal of each skin model is to define a point in the color
space, whether it belongs to skin color or not. The methods are distinguished into three
different kinds: explicitly defined skin regions, nonparametric skin distribution modeling,
and parametric skin distribution modeling. The explicit defined skin region defines a color
range in the used color space. Every pixel that falls into that range is denoted skin. This
model can be expressed via a set of simple rules. An advantage of this method is its sim-
plicity and its speed. However, it can be extremely difficult to find the right color range
and the right color space. The nonparametric methods try to built a skin model out of a
given training set but without the use of an explicit model. Jones and Rehg’s skin model
falls into this category, where the probability distribution of a pixel being skin is estimated
with histograms. Advantages of these models are the speed and the independence from the
shape of the skin color distribution in the particular color space. A disadvantage is the
required storage space which can be quite large. Also does the result highly depend on the
training data, since the ability to generalize is not given. The parametric models try to fit an
explicit distribution on the training data to define the skin color probability. The skin color
distribution for example, can be modeled with a mixture of Gaussians that can describe
rather complex shapes. An advantage of these methods is the lower required space, but the
goodness can depend on the used color space. Also the training consumes more time than
the nonparametric models.

An overview of the performance of the different methods can be found in Table 1.2. The
best performance was achieved with a Bayes SPM in RGB color space and the Maximum
Entropy Model in RGB color space. The authors also found out, that parametric modeling
methods are better suited if the training data is limited, since their ability to interpolate
and generalize training data. Non-parametric methods are less dependent on skin cluster
shapes and are therefore more promising for large target datasets. Finally the authors state,
that the evaluation of a color space regarding its performance on skin detection, cannot be
made in general, but does highly depend on the underlying method.

Another comparative study was presented in [1]. The authors compared many different
color spaces in use for skin detection with lookup tables similar to the Bayes SPM. In their
study they evaluated the color spaces on 2,284 downloaded offensive images from the Web
from different categories like: indoor and outdoor shots, single and multiple persons in the
image, professional and amateur shots. The HSV color space performed best with a true
positive rate of 93% and a false positive rate of 5.8%, directly followed by RGB with 91%
true positives and 5.9% false positives.

To summarize the results of the surveys, the choice of color space is not crucial for the
performance of a skin detector. The RGB color space can be used, which has an advantage
because it does not need additional time for transformation and it show good performance
in already used experiments.
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Table 1.2: Performance of different skin detectors reported by the authors from [42]. Ac-
cording to their evaluation, the Bayes SPM, and the Maximum Entropy Model in RGB color
space achieve the best combination of true and false positives.

Method TP FP
Bayes SPM in RGB 80% 8.5%

90% 14.2%
Maximum Entropy Model in RGB 80% 8%
Gaussian Mixture Models 80% ∼ 9.5%

90% ∼ 15.5%
SOM in TS 78% 32%
Elliptical boundary model in CIE-xy 90% 20.9%
Single Gaussian in CbCr 90% 33.3%
Gaussian Mixture in IQ 90% 30.0%
Thresholding of I axis in YIQ 94.7% 30.2%

1.2.3 Detection of Offensive Videos

While there already exist numerous of methods for classification of offensive images, there
are only few methods for detecting adult videos so far. A video basically can be regarded as
a set of images that have an additional time dimension. Therefore the techniques that exist
for image classification can also be applied on the video data what is actually done in most
of the approaches.

The approach of Lee et al. [26] compares two kinds of features which are based on color
information of keyframes. The keyframes are extracted at regular intervals. The first feature
is just based on one keyframe. A SPM is calculated in RGB color space, using a Gaussian
Mixture Model. The map is downscaled to a 40 × 40 pixel resolution and then used as a
feature vector for classification with a SVM. The keyframes used for the training process
were selected manually out of the total amount of extracted keyframes for both offensive
an inoffensive videos. The second feature is based on a group of keyframes. For each frame
in the group a HSV color histogram with 256 bins is computed. The final feature is the
accumulated and normalized histogram over all frames. For this feature a SVM is used
again for the classification task. Finally both features are combined and used with a linear
discriminant function for classification. The system achieved an accuracy of 91% on the test
data and performed better than each of the single features. Also the group of frames feature
achieved better results than the feature which is based on one keyframe. The data that was
used for training and testing consisted of different video files from different genres.

The method in [24] by Kim et al. is based on a shape detection of skin areas in video
frames, that are not title frames or shot boundaries. To detect title frames, a color his-
togram of the frame is computed. If a certain color range is high, the frame is regarded
as a title frame and not used for the following steps. A shot boundary is the boundary
between shots of the video. There exist three different kinds: hard cuts, fade in/out, and
dissolve. The authors use a simple color difference histogram between two adjacent frames.
This is a simple method based on the idea that the color distribution within one shot does
not change as much as across shots. If a frame is detected as shot boundary, it is rejected.
In the next step, the global motion is estimated. Global motion is the motion that evolves
out of camera movement like rotation, zoom, and tilt. The estimation of motion vectors is
done with a nearest neighbor approach within 16 × 16 macroblocks. If vectors are similar
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to one belonging to global motion, the frame is regarded as containing global motion. These
frames are rejected as well. The remaining frames are segmented into areas with similar
color. These areas are analyzed if they resemble skin color. They use a manually defined
color range for deciding which pixel belongs to skin. For each segment that contains skin,
the normalized central moments are calculated to describe the segment’s shape. The classi-
fication is done by calculating the weighted Euclidean distance to sample moments from a
training database that contains both offensive and inoffensive sample videos. The evaluation
was performed on 2,275 inoffensive and 980 offensive videos. A true positive rate of 96.5%
and a false positive rate of 31.5% were achieved.

In [33] a method is presented by Rea et al. which uses additional motion and audio
features as well as skin color detection. The idea is to estimate the foreground by combining
skin detection and the localization of local foreground movement. First, a skin map is built
for each frame, using the Jones’ method [22]. The second step extracts the MPEG motion
vectors. The vectors that belong to the global background movement are compensated. The
remaining vectors are clustered with k-means and such segmenting the frame into areas that
belong to the foreground and those that do not. The result from the skin map and the mo-
tion segmentation are combined. As additional feature the periodicity in the audio stream
is proposed. The authors claim that obscene scenes can be recognized by recurring sounds
and therefore are distinguishable if periodicity can be found in the audio signal. Periodicity
detection is performed by locating local maxima and minima in the autocorrelation function
of the audio energy. The measure is the area between the lines through the maxima and
minima. For obscene videos the area should be larger than for the inoffensive videos. This
method is also proposed for detecting periodicity in motion. The methods were tested on a
sample movie but no evaluated on a larger dataset so there are no classification results given.

The presented methods are mostly based on color information in selected keyframes.
Only one approach tries to use other informations like the audio stream and motion. This
method, however, is not evaluated on a larger dataset. Especially in this area of research,
there is still room for improvement which is indicated by the few existing approaches. As
for the problem of classifying offensive images, there does not exist some kind of standard
dataset, which can be used by every researcher to get comparable results.
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Chapter 2

Background

This chapter covers the background of the used techniques. It should give additional in-
formation to understand underlying methods to our approach which, is explained in detail
in the following chapter. The first section covers the construction of a skin probability map
(SPM) as it was presented by Jones [22]. The second section introduces the bag-of-visual-
words approach and additionally covers basics for the descriptors that will be used later on.
In the successive sections the classifiers being used are presented: the decision tree and the
support vector machine (SVM).

2.1 Bayesian Skin Probability Map

The initial step of one of the approaches is based on detecting skin inside an image. Some
of the existing methods were already described in the previous chapter. Comparing studies
showed that the approach of Jones [22] achieved good detection rates with low computational
costs. This method is also used in systems that are designed to classify offensive images, for
example in [35, 51, 20]. This section covers backgrounds on these histograms, because they
are used in the presented approach as well.

The main idea is to estimate a skin color probability distribution with histograms in RGB
color space. For each pixel with value rgb, the goal is to get the probability of that color
value belonging to skin color P (skin|rgb). This probability distribution can be estimated by
Bayes rule:

P (skin | rgb) =
P (rgb | skin)P (skin)

P (rgb | skin)P (skin) + P (rgb | ¬skin)P (¬skin)
(2.1)

where P (rgb | skin) denotes the distribution of rgb values of skin pixels, and P (rgb | ¬skin)
denotes the distribution of rgb values of non-skin pixels. Both can be estimated with his-
tograms from a given training set with labeled skin and non-skin pixels in the following
way:

P (rgb | skin) =
s[rgb]

Ts
(2.2)

P (rgb | ¬skin) =
n[rgb]

Tn
(2.3)

where s[rgb] denotes the number of skin pixel counts in the histogram bin associated with
the RGB value rgb and Ts the total number of skin pixels. Analogous n[rgb] is the number of
non-skin pixel counts of colors rgb and Tn the total number of non-skin pixels. The number
of bins is 32 per channel.

29
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The prior probabilities P (skin) and P (¬skin) can be computed directly from the dataset
by the whole number of skin and non-skin pixels encountered. However, it is not necessary
to use a prior, if one only is interested in what probability is higher. For that purpose the
ratio of the posteriors can be used:

P (skin | rgb)
P (¬skin | rgb)

=
P (rgb | skin)P (skin)

P (rgb | ¬skin)P (¬skin)
(2.4)

which then can be compared to a threshold 0 ≤ θ ≤ 1:

P (rgb | skin)
P (rgb | ¬skin)

≥ θ (2.5)

Here, a pixel is regarded as belonging to skin, if the ratio exceeds the threshold. The choice
of this threshold can be estimated as a trade-off between costs of false positives and false
negatives:

θ =
cp(P (¬skin))
cn(P (skin))

(2.6)

where cp denotes the costs of false positives and cn denotes the costs of false negatives. This
shows that the priors are not needed, since the costs can be altered to get the same results
with different priors. The threshold θ can be evaluated out of a labeled training dataset of
skin and non-skin pixels and set to meet the required classification rates.

2.2 Bag-of-visual-words

The bag-of-visual-words method became more popular in computer vision tasks, including
object recognition [11], visual categorization [10, 28], and even the classification of adult
images [12]. The idea is roughly based on models for text classification, where a text is
categorized by the occurrence of certain words, which are captured in a vocabulary. Anal-
ogous to a specific document type which might contain certain frequent occurring words,
images that show similar scenes might contain frequent occurring local areas that look alike.
These local patches are referred to as visual words. The idea is to learn a vocabulary of
visual words out of a set of images that fall into the same category, where each of the local
patches is extracted and described with some kind of local descriptor. Since all images of
the same category should have a similar distribution of visual words, a histogram of the
occurring patches can be used as a feature vector for classification. The focus on local image
information should make the system more robust against partial occlusion, deformation, and
clutter.

The bag-of-visual-words method mainly consists of the following steps:

• Extraction and description of local image patches

• Creation of the vocabulary or codebook

• Construction of a bag of visual words

• Classification of images

For sampling of local image patches, two techniques are mostly used in recent work: sampling
around a set of interest (salient) points, or sampling on a regular grid. One prominent
method to detect salient points is the Harris-Laplace detector [31] which responds to regions
that cover corners. Therefore homogenous regions in the background are often ignored when
creating a vocabulary. While salient points may be advantageous for object recognition, a
regular sampling might benefit scene classification [41, 28].
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Another important decision is the descriptor to use for the local patches. The descriptor
should capture enough information about the patch, making it discriminative enough on
category level. However, it should also be invariant against variations like image transfor-
mations, and lighting variations. A descriptor which is frequently used [10, 50, 28] is the
Scale Invariant Feature Transform (SIFT) [29]. It describes the shape of a region using
histograms of local gradients in a 4 × 4 pixel neighborhood around the sample point. 8 bins
are used for the histograms, leaving a 128 dimensional vector. The descriptor is invariant to
image transformations translation, rotation, and scaling and also to light intensity changes.
However, a disadvantage might be, that no color information is included. To cope with this
disadvantage some modifications came up which include additional color informations. One
possibility is to compute the SIFT features for each color channel instead of only a gray
image. Another possibility is to concatenate color histograms to the SIFT features. The
different advantages and disadvantages of such features are discussed in [41]. Instead of
using some descriptor for the local patches, some approaches just use the gray-scaled image
patches [28] themselves. Since the dimensionality of a whole patch might get very high, some
dimensionality reduction might be applied, for example with Principal Component Analysis
(PCA) [11].

After the local patches are extracted and described, the next step is to create a vocab-
ulary. The vocabulary is basically a set of visual words, which occur in the sample images.
Since the patches do not exactly occur in the images, similar patches have to be grouped to-
gether, to form a single visual word. One prominent technique is to cluster the patches into
k clusters with k-means [14], where k is the size of the codebook. Each visual word is then
represented by the mean of its cluster. In [12] another method for creating the vocabulary
is described, which is based on the training algorithm for unsupervised learning of Gaussian
Mixture Models.

With the existing vocabulary the bag of visual words can be created for each image. In
this step, basically a histogram is created that counts the occurrence of each visual word in
an image. This is done by extracting and describing the local patches in the same way as
for the construction of the codebook. For each patch, its visual word is determined which
can be done by i.e. calculating the Euclidean distance to each cluster center. This creates
a k dimensional feature vector.

The feature vectors can then be used as input for any classifier. Various different classi-
fiers were already tested in some papers, for example nearest neighbor, naive bayes, gaussian
mixture models, log linear models, and support vector machines (SVM). Especially the sup-
port vector machine became popular and achieved good classification results with the χ2

distance Kernel [50].

2.2.1 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) expresses a discrete input signal as a sum of cosine
functions with different frequencies and amplitudes [23]. In recent years it became quite
popular for image compression, and it is used for example, in the JPEG standard. Here,
the image is expressed by the low frequency components while the high frequencies are
discarded, losing only little information. Therefore, the DCT can also be used to reduce the
dimensionality of a local image patch. Only the low frequencies are used to describe the
patch, and therefore the descriptor is discriminative enough.

The 1D-DCT of a signal x = x0, ..., xN−1 of length N is defined as:

Ck =
N−1∑
n=0

xn cos
[

π

N

(
n +

1
2

)
k

]
(2.7)

for k = 0, .., N − 1. Since images are 2 dimensional signals, the DCT has to be extended
to a second dimension. The 2D-DCT for a N ×M dimensional input signal I is defined as
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follows:

Ck,l =
N−1∑
x=0

M−1∑
y=0

Ix,y cos
[

π

N

(
x +

1
2

)
k

]
cos

[
π

M

(
y +

1
2

)
l

]
(2.8)

A nice property of the DCT is its separability, which means that the 1-D DCT can be
performed first, on the rows and then on the columns, saving computational time. Therefore
the equation 2.8 can be expressed as:

Ck,l =
N−1∑
x=0

cos
[

π

N

(
x +

1
2

)
k

] M−1∑
y=0

Ix,y cos
[

π

N

(
y +

1
2

)
l

]
(2.9)

With this adaption the number of operations can be lowered from O(N2) to O(N log N).

2.2.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique to calculate the most meaningful basis
to a dataset [37]. It can also be used to reduce the dimensionality of data. The principal
components of n samples xi in an m-dimensional space can be calculated in the following
way. First, the mean value µ over all samples xi is subtracted from each sample: yi = xi−µ
and stored in a matrix Y . Then the covariance matrix C = 1

nY Y T is calculated. The
diagonal values in the covariance matrix store the variance of particular measurement types,
while the values of the diagonal axis express the covariance between measurement types.
Now the covariance matrix has to be diagonalized, leaving the eigenvectors and eigenvalues
of C. Since the largest eigenvalue corresponds to the eigenvector with the largest variance
which is the first principal component. So the eigenvectors are sorted according to their
eigenvalues, leaving a new orthogonal basis to the original data. The PCA can also be
calculated with single value decomposition (SVD).

The original signals si can then be expressed in as a linear combination of the principal
components:

si =
m∑

k=1

αik
pk (2.10)

where pk denotes the k-th principal component and αik
is the correlation coefficient for the

k-th component for the i-th signal. Since the principal components are ordered according to
their influence in the data, higher coefficients tend to get small. Therefore, for dimensionality
reduction, a signal can be expressed by using only the first l < m principal components,
instead of all of them. This is done by using the following steps: First, out of a set of sample
signals a PCA model is learned in the way it is described above. Then a new sample is
transformed into the new basis, leaving the coefficients αi1 , ..., αil

. These coefficients are
used as a new signal, which has a lower dimension than the original one.

2.2.3 SURF

SURF (Speeded Up Robust Features) [4] is a similar technique for interest point detection
and description like SIFT. Its goal is the detection and description of local points in an
image. An important requirement for the detector is, that it finds the same points under
different viewing conditions. The descriptor should be robust to noise, detection errors
and invariant to image transformations, while also being distinctive enough. SURF focuses
hereby on scale and rotation invariance. The detector is based on the Hessian matrix and
uses integral images to get an approximation with high processing speed. The detector is
based on Haar-wavelet-responses which are also approximated with integral images. Integral
images were first proposed by Viola in [43]. They can be used as a fast implementation of
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box convolution filters. The integral image IΣ(x, y) displays the sum over all pixels from the
origin to the point (x, y): IΣ(x, y) =

∑
i≤x

∑
j≤y I(i, j).

The detector is based on calculating the determinant of the Hessian matrix at different
locations and scales. Usually, the entries in a Hessian matrix are the partial derivatives of
a function f . For an image the derivatives can be expressed by a second order normalized
Gaussian filter, which is dependent on the position (x, y) and a scale factor σ. In SURF,
the second order Gaussian derivatives are approximated by using box filters which can be
calculated with integral images at low computational costs. Different scales are evaluated by
using larger box filters instead of scaling the image down. A local interest point corresponds
to maxima of the determinant of the approximated Hessian matrix.

The descriptor describes the intensity distribution within a scale dependent neighborhood
around the local interest point. Gradients in the x and y directions are found by using
Haar wavelet responses. These wavelets can be calculated with the integral images and are
therefore fast to compute. A local rectangular patch around the interest point is defined
with the size at the particular scale at which the point was found and the orientation of the
point. Then each patch is divided into 4× 4 sub-regions. In each of these regions the Haar
wavelets are calculated at regular intervals for x and y directions, denoted dx and dy. The
features for each sub-region are the sum of dx and dy and the sum of absolute values |dx|
and |dy|. As a whole, the SURF feature vector for a local image patch consists out of 64
values.

An extension of the the SURF feature vector is SURF-128. It further splits the sums of dx

and |dx| according to dy < 0 and dy ≥ 0, and vice versa. Therefore the number of features
is doubled, which creates more distinctive features, but may be slower to compare. One
important characteristic of the SURF descriptor is, that it does not include color information,
since it focuses on the intensity distribution of the patches.

2.3 Decision Trees

Decision trees are classifiers that partition the feature space into subspaces, where each of
the subspaces should correspond to one class [14]. A simple example for a decision tree is
shown in Figure 2.1. Here two classes are distinguished by a two-dimensional feature vector.
A non-terminal node represents a rule (or split) which is of the form x < v or x ≥ v, where
x is the tested feature value, and v a threshold value. If the test at a node is true, the rule
at the following node is evaluated. In the sample tree, the left child is the successor if the
rule did apply, and the right child otherwise. If a terminal node is reached, the final decision
is made according to the label at that node. Because the splits have the described form, the
feature space is partitioned into rectangular subsets. The feature space to this sample tree
is shown in Figure 2.2. Each class is represented by ten samples. The dashed lines show the
rule boundaries for each of the splits.

The construction of a decision tree is the process of building the tree on a set of training
samples. This process can be regarded as a recursive process, where the feature space is
continuously split into subsets. So there are basically two important questions to answer:
Which are good splits of the feature space and when decide to stop splitting. The following
steps are explained for Classification and Regression Trees (CART) [6] which are used as
classifiers later.

Good splits are splits that separate the space into smaller subsets which are ”purer”
than the parent set. A measure is defined which expresses how pure a node is: the impurity
i(t) of a node t. It has its maximum value if each class is represented with an equal number
of samples in the resulting subset and it is zero if only samples of one class are represented
in the subset. Therefore the quality of a split s at node t can be defined as the decrease in
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Class 1

Class 1

Class 2

Class 2

Feature 1 < 5

Feature 2 < 3

Feature 2 < 6

Figure 2.1: Decision tree for a two-class separation problem in a two-dimensional feature
space. Some sample points in the feature space can be found in Figure 2.2 with the decision
rules given by the tests in the nodes of the tree.
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Figure 2.2: Two-dimensional feature space with ten samples of each of the two classes. The
dashed lines show the decision boundaries given by the tree in Figure 2.1.



2.4. SUPPORT VECTOR MACHINES 35

impurity:
4i(s, t) = i(t)− pLi(tL)− pRi(tR) (2.11)

where tL and tR are the left and right descendant nodes, i(tL) and i(tR) their impurities,
and pL, pR the fractions of samples at the particular nodes. A possible measure for the
impurity is the entropy. The construction of a tree starts with the root node where all
possible splits are evaluated over all possible features. The one with maximum decrease
in impurity is chosen. This process continues for the child nodes until the impurity at a
node cannot be decreased further and that node is then declared a leaf. Now a class label
has to be assigned to that node. A class assignment rule as follows is used: j∗(t) = j if
p(j|t) = maxi p(i|t), where p(i|t) denotes the fraction of samples of class i in the subset of
node t. So the class label of the class with the most samples in the subset which belongs to
the terminal node is used as classification result. The fraction p(j|t) of samples can be used
to express a probability score for the classification result.

By this, a tree can be constructed with no impurity at each terminal node. However,
this is not what one actually wants, because this tree would resemble a look-up table which
is specialized on the training data and might not be able to generalize to test data. One way
to select an appropriate time to stop splitting is to use a stopping rule. A small threshold
β > 0 is introduced and the splitting at node t is stopped, if maxs∈S 4i(s, t) < β, where S
denotes all possible splits at node t. So if the impurity at a node cannot be lowered by a
minimal, previously defined amount, the set is not split up further.

A more appropriate method to get a final tree is pruning. Pruning is the process of
making a tree smaller, after it has been fully grown. Two terminal nodes are fused together,
if the impurity rises only little, if the according split is not used. Both nodes are then deleted
and the parent node is declared a leaf.

CART uses minimal cost-complexity pruning. A cost-complexity parameter α is in-
troduced, which compares the tree size to its misclassification rate in the following way:
Rα(T ) = R(T ) + α|T |, where R(T ) denotes the misclassification rate of the tree and |T | the
size of the tree. α is used to punish large subtrees that do not improve the classification rate
much, according to their size. For the actual pruning, a sub-branch Tt of the tree is found
for which Rα(Tt) is bigger than the misclassification rate at node t, which is the root of the
sub-branch. This branch is cut away, leaving t as a terminal node. The process is continued
until no branch can be found for which the pruning can be applied.

After training, a decision tree can be applied to new data samples in the way it was
described above. An additional nice property of decision trees is, that simple rules are
defined which can be easily interpreted by the user. This is in direct contrast to black box
classifiers, like artificial neural networks, where no such rules can be extracted. A rule can
be extracted out of the tree by combining all tests from the root to a terminal node.

2.4 Support Vector Machines

Support vector machines (SVMs) are based on a linear discriminant function. They aim
to get a better generalization by maximizing the margin, the distance from the separating
hyperplane to the closest data samples. Additionally, for non-separable cases, a kernel is
used, that transforms the sample points in another space, where the separability is higher.

Considering a binary classification task with n-dimensional feature vectors xi and class
labels yi = ±1, a linear discriminant function has the following form:

f(x) = sign(w · x + b) (2.12)

A correct classification can be achieved if

yi(w · xi + b) > 0 ∀i (2.13)
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margin

margin

Class 1
Class 2

Figure 2.3: Sample points from two different classes are separated by the separating hyper-
plane indicted by the solid line. Canonical hyperplanes (dashed lines) are parallel to the
separating hyperplane and go through the closest sample points, the support vectors. The
margin is given by the distance of a canonical hyperplane to the separating one.

The separating hyperplane is given by w ·x+b = 0. For the closest points to that hyperplane,
canonical hyperplanes can be defined, such that w · x + b = 1 holds for all points on the
positive side and w · x + b = −1 for all points on the negative side. These points are called
the support vectors. The margin is then given by a projection of these points to the normal
vector of the hyperplane w/||w||2. Therefore, the margin is 1/||w||2. Figure 2.3 shows the
separating hyperplane, the canonical hyperplanes, and the margin for some sample points.
The goal now is to maximize the margin by minimizing 1

2 ||w||
2
2 subject to the constraints

defined in equation 2.13. The learning task then can be reduced to a minimization of the
primal Lagrangian [7, 8].

Since applying a linear discriminant function benefits of linear separable data, which
might not be the case in most of the applications, a function is introduced, which maps
the features into a higher dimensional space. This space might be of infinite dimension.
However, it is not needed to know the exact transformation, because it can be implicitly
defined by a kernel K(xi, xj). A more detailed description of classification with kernels and
SVMs can be found in [7].

There are many possible choices for such a kernel function. One prominent choice is the
Radial Basis Function (RBF) Kernel which is defined as follows:

K(xi, xj) = e−γ||xi−xj ||2 , γ > 0 (2.14)

Another kernel is the χ2-distance Kernel which we will use for classifying histograms of local
image patches. Previous results showed its good performance for this application [50].

K(xi, xj) = edχ2 (xi,xj)/γ (2.15)

with

dχ2(xi, xj) =
n∑

k=1

(xik − xjk)2

xik + xjk
(2.16)

For the actual training process, the steps from [18] are followed. Training is actually a
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optimization problem, which has the following form:

min
1
2
||w||22 + C

l∑
i=1

ξi

subject to the constraints defined in equation 2.13, where l denotes the number of training
samples, and C > 0 is a penalty parameter of the error term ξ. The actual training process
starts with scaling of data into the range of [−1, 1], or [0, 1]. Then a grid search over the
parameters C and γ of the SVM is performed, using cross-validation. γ is a kernel parameter,
and C the penalty term defined above. For v-fold cross-validation, the training set is split
into v subsets of equal size. The classifier is trained on v−1 of these sets, while the remaining
one is used for testing. During the grid search different parameter combinations are tested
and the best performing one is used for final training, for which the whole training set is
used.
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Chapter 3

Approach

This chapter deals with the approaches that were used to classify offensive images and
videos. It is divided into methods that are used for image classification and methods which
are used for video classification. Since videos can be regarded as a set of images, some of
the techniques that are used on images, are used for video classification as well. Addition-
ally, motion information is used to further improve the separability between offensive and
inoffensive material.

The main goal of the methods is to built a system that classifies offensive images or videos.
Therefore, the most important requirement is to get good classification results. Usually, one
wants to maximize the correct classifications and minimize the misclassifications. However,
there are other requirements that may be of need, depending on the actual task. One goal
may be to lower the computational effort which is needed to perform the classification.
Depending on the task, this might become an important requirement, too. For example, in
use for content based Web filtering, the processing speed for a new image has to be very fast,
because the user wants to access a website directly and not to wait some additional time
until a result shows up. In order to find all offensive images on a hard drive, the duration of
the process is not that important. Further requirements, like usability might exist as well.
However, the main focus is on classification performance, while leaving the processing speed
as secondary.

All of the approaches are based on a general processing pipeline for classification tasks
presented by Duda et al. in [14]. A slightly adapted pipeline is shown in Figure 3.1. The first
step consists of some preprocessing methods. These steps are usually performed to make
the data more suitable for later classification. Methods to make the data more similar,
for example by scaling all images to a fixed resolution, or the transformation into a more
appropriate color space, might be included in this step. A goal of preprocessing is to increase
the separability between the classes of the dataset.

The successive step is the feature extraction. Instead of using whole data samples, i.e.
whole images, features are extracted out of the samples for the classification task. A feature
should capture distinctive information in a way, such that the values for samples from the
same category are similar and different for samples of different categories. Furthermore,
features should be invariant to transformations such as translation, rotation and scaling.
Feature based representations are also preferred because they tend to have a lower dimen-
sionality than the whole data samples, which saves computational effort. The features are
stored in vectors that are fed to a classifier. A classifier is trained on a training set which
consists of samples of the data that should be classified later. The choice of the training
data and the number of samples influence the performance of the final classifier. The final
classifier is evaluated on a separate evaluation set after the training is completed to measure
its performance.

39
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The following subsections describe the realization of the first two steps for the different
approaches, while the training and testing are described in more detail in the following
chapter.

Preprocessing

Feature Extraction

Training

Evaluation

Figure 3.1: The general pipeline for image classification consists of four successive steps.
First, the data is preprocessed for the later steps. Then, features are extracted and used to
train classifier. In the final step, this classifier is evaluated.

3.1 Methods for Classifying Offensive Images

The literature presented mainly two different techniques that were used for detecting of-
fensive images: skin color based methods and methods that were based on local patches.
The first one was used by most researchers while the latter one was recently presented by
Deselaers in [12]. However, the visual words approach outperformed the skin color based
approaches. Therefore, the skin color based approach is just based on simple features and
mainly used here for comparing the visual words approach to skin color based methods.

The same preprocessing step is used for all images before any features are extracted.
Each image which has a larger height than 250 pixels is downscaled such that the height is
250 pixels while the aspect ratio is preserved. This is done to save computation time if an
image is too large.

The second reason is the regular sampling method used for the bag-of-visual-words ap-
proach. If an image is much larger than the others, an extracted local patch contains a
much smaller region than it would in a smaller image. Since the local patches are clustered
according to their similarity, using images with varying sizes might ruin the idea of getting
patches that correspond to certain reoccurring patterns in images. Therefore, images which
are too large are scaled down to get rid of this problem.

Since two different methods for the classification task are presented, both methods are
fused to see if the performance can be improved by combining the results of the two ap-
proaches. This is done by a late fusion stage, meaning that the classifier output of the two
methods is combined instead of combining features before the actual classification.

The section is divided as follows: First, the approach based on skin detection is described.
The second section covers the bag-of-visual-words approach, while the last section is about
the fusion of the results from the previously described methods.

3.1.1 Features Based on Skin Detection

The first approach is based on skin detection with simple features. The idea is to implement
a baseline system that follows closely the existing methods for offensive image classification.
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Basically, the following steps are used: First, a skin probability map (SPM) is constructed.
Then the map is binarized leaving either pixels that belong to skin or pixels that do not.
Afterwards, a step is included to remove noise. Finally, five features are evolved out of these
steps that are used for classification.

(a) original image (b) skin probability
map

(c) binarized SPM (d) binarized SPM after
noise removal

Figure 3.2: Three steps are applied to detect the skin areas in an image. First, a skin
probability map is constructed by using color histograms. The resulting map is thresholded
to get a binarized version. In the last step, noise is removed.

Figure 3.2 shows the outcome of the main steps. The first image (Figure 3.2(a)) shows the
original image. This image contains skin as well as other materials in the background which
resemble skin color. First, the SPM of the original image is created using color histograms in
RGB color space. The same histograms are used as were presented by Jones in [22]. A more
detailed description was already given in section 2.1. The probability of each pixel being
skin is displayed with a brightness value in the skin probability map. For high probabilities
the pixel appears brighter. If a pixel is white, the probability equals 1 and if a pixel is black,
the probability is 0. The result for the sample image can be found in Figure 3.2(b). The
brightest parts are the body and some parts of the tiles in the background. Some parts of
wood in the background as well as the hair have a lower probability of belonging to skin.

In the next step a binarized version of the SPM is constructed. To do this, a global
threshold θ is used. If the value of a pixel exceeds this threshold, the pixel is marked as
skin and the pixel is set as white. If the probability is below this threshold, the pixel gets
black. θ is estimated in a way that θ = µ1+µ2

2 holds, where µ1 is the mean gray value of
skin pixels and µ2 the mean gray value of non-skin pixels. The threshold is estimated in this
way, because in overshadowed or too much illuminated images the probability of belonging
to skin changes. Samples for this can be found in Figure 3.3 and Figure 3.4. The first figure
shows an image with a rather dark tone. Therefore the SPM (Figure 3.3(b)) contains lower
probabilities of skin indicated by the fact, that there are less bright spots. Especially if
compared to Figure 3.2(b). The same fact can be found in Figure 3.4(b) where the original
image is too much illuminated. However, both binarized maps capture the skin regions in a
rather good way.

The last step is performed to reduce noise in the skin images. Figure 3.2(c) shows the
binarized SPM where much noise can be found in the background. Materials like wood,
tiles, wallpapers, or sheets share the same color range as skin. These materials are often
contained in backgrounds of offensive images. Noise removal is done in two steps: first, the
connected components in a 4-pixel neighborhood are computed. Then all but the ten biggest
connected components are removed. The result can be seen in Figure 3.2(d). Most of the
small points in the background are removed. The number ten was chosen to capture skin
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parts that are broken, either because the people are partly dressed or because some parts are
overshadowed or too much illuminated. Since skin has a high reflectance this might often
be the case. This phenomena can be seen in Figure 3.3. Some areas of the body appear too
dark or too bright. In the SPM of this image, the areas are black, leaving holes in the skin
image. Finally five features are calculated during this process. These features include the
following:

• Skin probability ratio

• Skin ratio before noise removal

• Number of connected components

• Skin ratio after connected components

• Skin ratio of the largest connected component

The skin probability ratio is calculated in the following way:

SPR =

∑N,M
x,y p(x, y)

NM
(3.1)

where p(x, y) is the probability of being skin of the pixel x, y and the resolution of the image
is N×M . The skin ratio before noise removal is the sum over all skin pixels in the binarized
SPM divided by the pixel count:

SR =

∑N,M
x,y s(x, y)

NM
(3.2)

where s(x, y) denotes a skin pixel at position x, y in the binarized SPM. The number of
connected components are just the number of connected components found in the skin
image. The skin ratio after component removal is calculated in the same way as the skin
ratio only that just the ten biggest components are taken into account. The size ratio of
the largest connected component is the number of pixels in the biggest component divided
by the image size. Most features are normalized by the total number of pixels to get values
that are independent of the image size.

(a) original image (b) SPM (c) binarized SPM

Figure 3.3: A dark image where the probability of the skin regions is not very high, as can be
seen in the skin probability map. By using an adaptive global threshold, the binarized SPM
covers almost the whole skin area.
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(a) original image (b) SPM (c) binarized SPM

Figure 3.4: A Bright image that is too much illuminated and because of that the probability
of skin is low for the actual skin pixels. The binarized SPM manages to cover the whole skin
region, since an adaptive threshold is utilized.

3.1.2 Bag-of-visual-words

The second method is based on the bag-of-visual-words method that was generally described
in section 2.2. This section describes how the steps of this method are performed and why
things were done this way.

Sampling Methods of Local Image Patches

First, a codebook has to be created. Therefore the extraction and description of local
image patches have to be executed. Two different methods to extract the local patches are
distinguished. The first one is a regular sampling of 14 × 14 patches every 5 pixels, which will
be referred to as the regular sampling method. The second one samples rectangular patches
with different sizes at different steps. A basic stepsize b is introduced with b = N/40, where
N denotes the height in a N ×M dimensional image. For the sampling rectangular patches
of size p×p are extracted every s steps, where p = αb and s = βb. The sampling is repeated,
starting with α, β = 1 until α = 4 and β = 2.5, where α is increased in every new run by
0.5 and β is only increased every second run by 0.5. This method will be referred to as
very dense sampling. Grid sampling was chosen, because it led to a better performance in
classifying whole scenes [41, 28]. Unlike sampling around salient points, the regions in the
background are used as well which might lead to a better discrimination between images of
different categories.

Very dense sampling is used for the SURF and ColorSURF descriptors to express different
scales as well, because SURF can handle different scales. For the PCA and DCT descriptors
only the regular sampling is used, because PCA needs samples of the same dimension and
we wanted to compare both descriptors to each other.

Table 3.1: Overview of the descriptors for local patches

Descriptor Sampling # Features Color Information?
DCT regular 78 yes
PCA regular 30 yes
SURF very dense 128 no

ColorSURF very dense 256 yes

Different Descriptors and Construction of the Vocabulary

Four different descriptors are used to describe the local patches: DCT, PCA, SURF, and
ColorSURF. A short overview of some properties of the descriptors can be found in Ta-
ble 3.1. For the DCT and PCA descriptors, actually only the image patches are used. The
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two transformations are only applied for dimensionality reduction. Instead of the widely
used SIFT descriptor, we use SURF, since it is faster to extract and the performance is
similar. Because SURF is based on the gray scale image, no color information is put into
this descriptor. Since color may be an important source of information for the classification
of offensive images, the idea of concatenating color histograms to the SIFT features has been
applied to SURF as well. This descriptor will be referred to as ColorSURF.

• DCT: For the DCT descriptor, the local patches are extracted with the regular sam-
pling method. The same transformation and description method as in [40] is used.
The patches are transformed into the YUV color space in the following way:

Y UV :


Y = 0.30R + 0.59G + 0.11B

U = −0.15R− 0.29G + 0.44B

V = 0.62R− 0.52G− 0.10B

(3.3)

with R,G,B being the color channels of the original RGB color space. The transfor-
mation expresses the color with one luminance component (Y) for intensity changes
and two chrominance components (UV) for color changes. For each channel the DCT
is calculated. From the resulting coefficients the first 36 coefficients are extracted in
a zigzag pattern from the luminance channel and the first 21 coefficients are obtained
from each of the chrominance channels in the same way. As a whole, each image patch
is described with a 78 dimensional vector.

• PCA: For the PCA descriptor, the local patches are extracted with the regular sam-
pling method. The patches are not transformed into another color space. A PCA
model is learned from all the patches and then used for dimensionality reduction of
the patches by using the first 30 correlation coefficients (see section 2.2.2) after apply-
ing PCA on the patches.

• SURF: The patches that are described with SURF are sampled with the very dense
sampling method, since the SURF descriptor allows to describe patches with different
scales. For each patch the SURF-128 feature vector is computed. For more details see
section 2.2.3 or [4].

• ColorSURF: Since one disadvantage of SURF is, that it does not include color infor-
mation, the idea presented by van de Sande in [41] are applied to modify SURF. Color
histograms in HSV color space are concatenated to the SURF-128 feature vector. The
HSV values are calculated from RGB in the following way:

HSV :


H = 1

2π arccos
1
2 ((R−G)+(R−B))√

(R−G)2+(R−B)(G−B))

S = max(R,G,B)−min(R,G,B)
max(R,G,B)

V = max(R,G,B)

(3.4)

HSV describes colors as points in a cylinder around a central “brightness“ axis. The
angle is expressed by H and denotes the color’s hue, while its saturation is expressed
with S, which is the distance from the central axis to the point. V (the value) gives
the color’s intensity value which is displayed as the height on the central axis.
For histogram creation, each local patch is divided into 4 equally sized blocks. For
each block a color histogram for the H and S channel is calculated, using 8 bins for H
and 4 bins for S. Intensity is not used, because it is already expressed in the SURF
descriptor. The histograms are concatenated with the SURF features, leaving a 256
dimensional vector.
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After describing each of the local patches with the particular descriptor, the vocabulary
is learned by clustering the features for the patches with k-means. Each visual word is
represented by the mean vector of its cluster. As a whole 2000 of these visual words are
used for each codebook.

Histogram Construction

After the creation of the codebook, the patches for each image are extracted and a histogram
H(I) of the occurrence of each word is created. This is done by representing each patch ip
with the cluster number c ∈ {1, ..., C} that corresponds to the patch in the following way:

c(ip) = arg min
c

d(ip, vc) (3.5)

where d denotes the Euclidean distance, and vc the mean vector of cluster c. The bin Hc(I)
is constructed in the following way for each cluster:

Hc(I) =
PI∑

p=1

δ(c, c(ip)) (3.6)

where

δ(x, y) =

{
1, x = y

0, otherwise
(3.7)

and PI denotes the number of local patches in the image. The final histogram is a 2000
dimensional feature vector and captures the frequency of how often each visual word occurs
in an image. As classifier for the bag-of-visual-words features a SVM is used with a χ2-
distance Kernel.

3.1.3 Fusion of Results

So far two different methods are used: a simple method based on skin features and the bag-of-
visual-words approach. Each of these methods is used with a classifier, getting classification
scores after applying these methods. These scores indicate the probability of an image I
being offensive Pm(o|I), where m denotes one of the methods. The idea behind the fusion
is to improve the classification result by combining the results in an appropriate way.

There are some possibilities to fuse the classification results. One would be to use the
maximum of the scores. Another possibility would be to use the product or the sum of both
scores. A more general method, the weighted sum of the classification results of the two
approaches is used. An advantage of this fusion is, that the influence of a particular method
can be seen by the weight for it. The final classification score is given by:

P (o|I) =
2∑

m=1

wmPm(o|I) (3.8)

where wm ∈ [0, 1]. Hereby the weights are learned from an additional validation set in the
following way: First, the classifiers are trained on a training set. Afterwards the classification
results of the previously trained classifiers are created for the samples in the training set.
Then different combinations of weights are tested and the pair with the best performance
on the validation data is picked. Finally, the performance is evaluated on a test set, like the
methods without fusion.
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Video

Scenes

Shots

Frames

Keyframes

Figure 3.5: A video can be separated into scenes, which have a plot specific meaning. Scenes
are divided into shots according to camera position. Each shot consists of a number of
frames. To get a meaningful image representation of a shot, a keyframe is extracted.

3.2 Classification of Offensive Videos

The classification of offensive videos is divided into two categories: one approach is based
on only the frames, the other one uses additional motion features out of the video stream.
Basically, videos can be regarded as sets of images with an additional time stamp that defines
a sequence for these images. Larger videos can be divided into scenes which can be further
divided into shots. A scene captures footage with a similar plot specific meaning, e.g. a talk
between two persons in a restaurant. A shot is the separation according to camera position,
e.g. the close-up of one of the two person during the talk. Each shot consists of a set of
frames. Because one second of video footage consists of 25 frames, the frames during one
shot are usually pretty similar. Therefore, a shot can be expressed with a so called keyframe,
that captures the displayed information. A visualization of the segmentation of videos can
be found in Figure 3.5. Additional motion features can be exploited, which describe the
motion between frames. The hope is that the classification performance can be improved
by using additional motion features to the frames based ones.

As for the classification of images, the classification process for videos consists of the same
four steps as shown in Figure 3.1. The preprocessing step in the process of the classification
of videos is a scaling to a 320 × 240 resolution. This size was chosen for the same reasons



3.2. CLASSIFICATION OF OFFENSIVE VIDEOS 47

as for scaling images to a similar size: to increase processing speed and to get similar sized
local patches for keyframe classification. The following step is the extraction of keyframes for
which a simple method is proposed. Because the available offensive video material consists
mainly of short sample clips which were obtained by a Web download (see section 4.1.6)
and are mainly between 20 and 30 seconds long, methods for shot boundary detection are
not needed for this data. Therefore, the frames are regularly extracted every two seconds,
which corresponds to every 50 frames.

Further parts of this section are divided as follows: the next section covers the classifica-
tion of videos based on keyframes, while the following section covers the methods which are
based on additional motion features. A late fusion of the classification results is performed
as well. The method is the same as was presented in the previous section on classification
of offensive images.

3.2.1 Classification of Offensive Videos Based on Keyframes

Keyframes are basically images. Therefore, the methods which were presented for classifi-
cation of offensive images can be applied to them in the following way: After the keyframes
have been extracted for a video, they are classified by one of the presented approaches. Since
these were described in section 3.1 this part is not repeated here. After the classification, a
result is needed for the whole video and not just for its keyframes so the scores have to be
fused to get a final result.

Ideally, all keyframes of a video should correspond to the same class, although the clas-
sification scores might differ slightly. A reasonable choice for a fusion is to use the max-
imum score off all the keyframes, since a video should be regarded as offensive, if one of
its keyframes is offensive. However, due to misclassifications, this might increase the false
positive rate by a large amount. So a more stable fusion is needed, which is robust to
misclassifications of single keyframes.

One assumption is that an offensive video contains mostly offensive keyframes, while
an inoffensive video contains mostly inoffensive keyframes. Based on this assumption, the
average score of all keyframes is a reasonable choice for a fusion rule. Therefore, let X be a
video with keyframes xi with 0 ≤ i ≤ N , and P (o|xi) the classification score of keyframe xi

being offensive. This classification result can be obtained from one of image classification
methods. The final result is calculated in the following way:

P (o|X) =
∑N

i=0 P (o|xi)
N

(3.9)

as it was presented by Ulges et al. in [39]. This fusion rule can be compared to the sum rule
in classifier combination. Since the final score is an average over all frames, misclassifications
of some frames are compensated. However, if only some frames of an offensive video are
offensive, this method might fail. But this should actually be not the case in most of the
videos.

3.2.2 Classification of Offensive Videos Based on Motion Features

So far the classification of whole videos is achieved by splitting the video into a set of
keyframes, which are classified with the already presented methods. Afterwards a final result
is obtained by fusing the scores of all keyframes. However, videos store more information
than just the frames. One additional information which can be exploited, are the occurring
motion signals. It is distinguished between two different motion descriptors that have been
used before. One is based on motion histograms, and the other one tries to find periodic
patterns in the motion signals.
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A basic assumption is that the occurring motion signals differ for offensive and inoffensive
videos. The motion histograms cover the motion patterns in local blocks. The periodicity
detection tries to find periodic motion in the video stream which might correspond to scenes
that show people having sex. Each of these features might not be discriminative enough.
Hopefully, a late fusion of classification results of motion and keyframe features can improve
the classification performance.

The motion vectors for both methods are extracted from the XViD1 encoded MPEG
video. Generally, motion is distinguished into global and local motion. Global motion
denotes all the camera related motion, like camera zooming, rotation, and panning, while
local motion involves the motion which corresponds to objects. A simple method to estimate
the global motion is utilized, which is basically presented by Pilu in [32]. An affine velocity
model is fitted using RANSAC [16]. The local motion can be obtained by subtracting the
global motion from the whole motion field.

Motion Histograms

This approach follows the motion features presented by Ulges et al. in [40]. The idea is
to describe the motion signal via histograms which are constructed for local regions. By
constructing histograms for different regions, the descriptor can cover the occurrence of a
motion pattern in a frame as well as the kind of motion which occurs.

Each frame is divided into 4× 3 regular blocks to define the different regions. A motion
histogram over all frames in the video is then constructed for each of these blocks. The size
of the histograms is 7 bins each for motion vectors in x- and y-direction respectively. All
motion vectors are clipped to [−20, 20] × [−20, 20]. The final feature vector is obtained by
concatenating all histograms for the blocks, leaving a 588-dimensional vector.

Periodicity Detection

The idea of using periodicity detection for offensive videos was already proposed by Rea et al.
in [33]. Periodic motion signals might more frequently occur in offensive videos, particularly
for scenes showing sexual activities. To detect periodic signals, the autocorrelation function
(ACF) is used as was proposed in [33] and by Tong et al. in [38].

The ACF for a discrete signal s of length N is defined as follows:

ACFs(τ) =
1
N

N∑
i=1

s(i) · s(i + τ) (3.10)

It can express how similar a signal is to itself at different lags τ [44]. The autocorrelation
can be regarded as a convolution, and therefore the Fast Fourier Transform (FFT) can be
used to avoid the quadratic calculation. This is achieved by calculating a dot product in
the frequency domain. Since the ACF of a periodic signal is also periodic with the same
periodicity, the ACF can be used to estimate the periodicity of a signal. Because the ACF
measures the self-similarity, the beginning of a period is indicated by a local maximum in
the ACF. Therefore, periodicity in a signal can be detected by finding local maxima in its
autocorrelation function and measuring the distance between them.

The following steps are performed to detect periodic patterns in motion signal. First,
the extracted motion vectors are compensated of global motion as was described above.
From the resulting signals, the mean motion signals of a N ×M sized frame are calculated
separately for the x- and y-direction over the whole video.

dx =
1

NM

∑
dx(x, y) (3.11)

1http://www.xvid.org
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dy =
1

NM

∑
dy(x, y) (3.12)

where dx, and dy are the local motion vectors for x- and y-directions at position (x, y). The
following steps are calculated for both dx, and dy. However, the formulas are only given for
dx.

First, the mean of the mean motion signal is subtracted from each value:

s(t) = dx(t)−mean(dx) (3.13)

Afterwards the signal is normalized in a way that every value falls into [−1, 1]. Afterwards
the autocorrelation function ACFs for the normalized signal s is calculated. The local
maxima mi, i = 1, ..., k of ACFs are found using a sliding window over the function. Then
a a signal l is calculated, which stores the differences of the maxima: lj = mj+1−mj , where
j = 1, ..., k − 1. Now the periodicity can be estimated by calculating the mean of l:

p =
1

k − 1

k−1∑
j=1

lj (3.14)

which is used as one component of the final feature vector. Additionally, the variance of l is
calculated as well:

v =

√√√√ 1
k − 1

k−1∑
j=1

(lj − p)2 (3.15)

We also use features based on [33], where the surface between the curve through the local
maxima and the curve through the local minima is used. The local minima are also found
by a sliding window. The surface is calculated in the following way:

a = area(fmax)− area(fmin) (3.16)

where area(f) is the area under the function f , fmax, and fmin denote the line through the
local maxima and minima of the ACF of signal s. The final feature vector is constructed by
calculating p, v, and a for both directions and storing them in the same vector.

A visualization of the periodicity detection is given in Figure 3.6, and Figure 3.7. Fig-
ure 3.6 shows the mean motion signals and their ACF for an offensive sample video, that
shows people having sex. In Figure 3.6(a) the mean motion signal in x-direction is displayed.
This signal shows a periodic pattern, which can also be seen in the according ACF (Fig-
ure 3.6(b)). In both signals the peaks have the same distance from each other. Also the
area between the line through the local maxima and the line through the local minima is
large which indicates also a strong periodicity. The same observation can be made for the
mean motion signal of the y-direction (Figure 3.6(c)). However, for this signal, the period-
icity is not as strong as for the x-direction, which results an a smaller area between the two
enclosing lines (Figure 3.6(d)). Also the peaks in the ACF have a larger distance compared
to the other one.

In contrast, Figure 3.7 shows the same graphs for an inoffensive YouTube video. The
mean motion signals for both directions (Figure 3.7(a) and Figure 3.7(c)) show only very
little periodic patterns. Both ACFs (Figure 3.7(b) and Figure 3.7(d)) show no periodicity
and the local maxima have a rather large distance from each other. The area between the
lines through the extrema is small.

These two figures give an impression of how the method works. For periodic signals,
the signal autocorrelation function shows peaks at the same periods as the source signal.
For offensive videos the distance between the peaks is expected to be small, and therefore
showing a high periodicity. Also the area encapsulated by the lines through the local maxima
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and minima should be large for offensive videos, whereas for inoffensive videos the opposite
should hold.
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Figure 3.6: This plot shows the mean motion vectors and their ACFs for an offensive video,
that shows people having sex. The short distance between the peaks of the ACF and the large
area between the lines through the extrema show, that there is a strong periodic pattern in
both motion signals.

Since the videos may be long regarding the number of frames contained, we also test a
slightly different method for periodicity detection. The presented features are only extracted
for a sliding window over the mean motion signals. A classification score is generated for the
window, and the final classification result is obtained by fusing the results of all windows.
This is similar to the classification method for videos which only use the keyframes as input.

The sliding window uses a step size of one second and a window size of three seconds,
which corresponds to 25 frames for step size and 75 frames for window size. For the fusion,
the following methods are compared: a simple maximum vote, an average vote, and a
combination of both. Let P (o|wi) denote the classification score of sliding window wi with
i ∈ [1,W ], then the maximum vote is given by:

Pmax(o|X) = max
i

P (o|wi) (3.17)

The average vote is calculated as follows:

Pavg(o|X) =
1
W

W∑
i=1

P (o|wi) (3.18)

and the combination is obtained by:

Pavgmax(o|X) = PAV G(o|X) + PMAX(o|X) (3.19)
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In the following text, this method will be referred to as PeriodicityWin, while the periodicity
detection on the whole video will be referred to as periodicity detection.
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Figure 3.7: This plot shows the mean motion signals and their ACFs for an inoffensive
video. Both mean motion signals show no periodic pattern which is also indicated by the
ACFs. The distance between the peaks is not regular, and the area between the lines through
the extrema is low.
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Chapter 4

Experiments

This chapter contains an overview of the performed experiments as well as an overview of
the datasets on which the experiments were performed.

4.1 Datasets

The task of finding the right datasets is not an easy one. Since the classifier is trained on
a certain dataset, the performance depends on how well the data is picked. It is important
to find a dataset which represents the real data in a good way to get reliable results for the
classification. It is also important to get enough data, because a classifier needs a certain
amount of training samples to perform well on test data. Another problem that occurs
during the process of finding a dataset is the need of labeling. Each image has to get
at least one label, declaring whether this image is offensive or not. The labeling process,
however, is tedious work and it is beneficial if this step can be skipped, for example by using
an existing dataset.

For the task of classifying offensive images, we need to get both offensive and inoffensive
images. Offensive images can be gathered by a crawl through the Internet. There exist large
amounts of websites showing adult content of many kinds. But a wide range of images is not
offensive which makes it difficult to gather a representative set of these images. Therefore
we decided to focus on two likely scenarios in which a filter of adult images may be of
use. One scenario is an adult content filter for web browsers which is a likely application
to guard children from the increasing amount of adult material in the Internet. The other
scenario is the search for pornographic images on a hard drive which might be performed by
police forces to detect illegal material on a suspects computer. Therefore we decided to use
the following sources for our training and test data for inoffensive images: the Corel Image
Database, Flickr1, and images gathered from a crawl through the Web.

An additional problem is to get comparable results to other publications on the specific
topic. The best way to get comparable results is to have some kind of a standard dataset
which can be used to create the results. Regarding the classification of offensive images,
however, such a dataset does not really exist, since every researcher uses his own data. A
good comparison between systems is therefore difficult, because one cannot compare the
results directly and one has to rely on the published results. There exists one exception,
which has been used in two publications ([25] and [12]) and therefore, the presented systems
are tested on this data as well.

A short overview of the datasets used for image classification can be found in Table 4.1
while a more thorough description will be presented in the following sections. For video

1http://www.flickr.com
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classification, only offensive Web videos are taken into account. The opponent class is given
by YouTube videos which cover a wide range of inoffensive footage. An overview of the two
video datasets is given in Table 4.2.

Table 4.1: Overview of the datasets for offensive image classification

Dataset size (number of pictures)
Standard dataset 8,510
Offensive images from the Web 4,248
Corel Image DB 4,198
Flickr images 2,000
Inoffensive images from the Web 2,752

Table 4.2: Overview of the datasets for offensive video classification

Dataset number of videos number of keyframes
Offensive videos from the Web 932 11,612
YouTube videos 2,663 25,660

4.1.1 Standard Dataset for Detection of Offensive Images

This dataset was introduced by Kim in [25] and later used by Deselaers in [12]. The purpose
of this dataset was to train a classifier that performs well with different filtering rules.
Varying filtering rules are needed, because different cultures have different views on what
may be offensive and what may not. This dataset divides the images into the following five
categories:

• inoffensive images: images that mostly contain landscape and nature scenes (D)

• images with lightly dressed people, for example people wearing swimsuits or underwear
(AA)

• images with topless people (AB)

• images with naked people (CA)

• pornographic images, images that show people having sex (CB)

Each of these classes contains 1,702 pictures, giving a total of 8,510 pictures. Some
sample images of each of these categories can be found in Figure 4.1. It was decided to use
this dataset for various reasons. First, it contains images that are labeled for five different
categories. The labeling of images is tedious work and having access to already labeled
data can save a large amount of time. Second, this dataset has been used in two other
publications, which allows to get a better comparability to these approaches. To test the
performance of the classifier, we perform four experiments with images from this dataset.
In the first experiment only the pornographic images from class CB are used as offensive
images. In the second experiment the images containing naked people (class CA) are added
to the offensive images, and so on. The final experiment regards images from all categories
AA, AB, CA, CB as offensive. Each set of offensive images is tested against the inoffensive
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images of class D. These experiments are denoted as “CB-D”, “CA-CB-D”, “AB-CA-CB-D”,
and “ALL-D” in the following sections respectively.

A disadvantage of this dataset, however, may be that it is not representing the real world
data. The offensive images have mostly rather high quality compared to images downloaded
from the Web. The class of inoffensive images mostly contains images with nature shots
where no human being appears. Regarding the application as a Web content filter this may
not be the most appropriate dataset to choose.

(a) AA

(b) AB (c) CA (d) CB (e) D

Figure 4.1: Images from the standard dataset: a) a lightly dressed person, b) a topless person,
c) naked people, d) people having sex, and e) an inoffensive image

4.1.2 Offensive Images from the Web

One possible use of a system that can detect offensive pictures is to block these kind of
pictures in a Web browser. Because the performance of a trained system is best when
applied to the same domain as trained on, 4,248 adult content images were gather by a
random crawl over pornographic websites and manually labeled afterwards. The websites
were freely accessible and not password protected, therefore these images can be viewed by
everyone. WGET was used to recursively download all images on a website. Images were
regarded as offensive if:

• they display partly naked people, for example a naked female breast

• they display naked people

• they display people having sex

The pictures have a wide range of different resolutions from very high to very low. The image
quality has also a very wide range since some are professional shots while others are made
by amateurs. Some examples are shown in Figure 4.2. This dataset is used for offensive
images that are tested against the datasets with inoffensive images, that are presented in
the following subsections. These experiments are denoted “XXX-Corel”, if images from the
Corel Image DB form the opponent class, “XXX-Flickr”, if the inoffensive images are taken
from Flickr, and “XXX-Web Images”, if the inoffensive Web images are for the opponent
class.
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Figure 4.2: Samples of offensive images which were downloaded from the Web. They show
a wide variety of (partly) naked people and people having sex in various scenes.

4.1.3 Corel Image Database

To get a dataset with images that are not offensive, we used 4,198 randomly selected images
from the Corel Image database. These images display a large amount of inoffensive scenes
including the following:

• various animals like dogs, horses, penguins, tigers

• landscapes and cities of countries and continents like Africa, Alaska, Australia, Hol-
land, Hawaii, Italy

• sceneries like beach, desert, forest, rock formations, ruins, sunset, tropical islands

• people from various countries

• artificial images

• food like barbecue, and fruits

The images in this set are not representative of common web images, because they share
the same resolution. Also they have a high quality which is not guaranteed in common web
images. This dataset is used nevertheless, because it contains a huge amount of different
motifs that are not offensive. Also many materials can be found that are similar to skin
color like rocks, sunsets, and the fur of some animals. However, these images should be
easier to separate form offensive image than inoffensive images from the Web.

4.1.4 Flickr Dataset

Another set of inoffensive images was gathered by downloading from Flickr2. Flickr is an
online portal that allows people to upload and share pictures they have taken themselves.
The images can be annotated with tags, allowing other people to find pictures easily. This
makes it possible to get a large amount of images that are not offensive. Another advantage

2http://www.flickr.com
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Figure 4.3: Sample images from the Corel Image DB which show different landscape shots,
people, and animals

is that the images are made by normal users and not from professional photographers like
the Corel Image Database. These images give a better representation to images that can
be found on websites (for example web blogs or other personal homepages). These kinds of
images can also be found in private image collections, since they display scenes from holidays
or social events like concerts and weddings. They are the same pictures people put onto
Flickr. Pictures with the following themes and tags were downloaded from Flickr:

• animals (bird, cat, dog, insects, etc.)

• events (concert, party,wedding)

• landscape (skyline, skyscraper)

• nature (beach, forest, hills, lake, mountain, river, etc.)

• people (face, person, portrait)

• sports (American football, baseball, basketball, bowling, hockey, soccer, etc.)

There is a concentration on images that contain people (events, people, sports) because
these may be the problematic cases when used with a skin detector. However, this choice
should make these images harder to separate from offensive image than images form the
Corel Image DB. The other images were chosen because many of these images exist on local
harddrives and in the Web. As a whole 2,000 pictures were gathered from Flickr. Some
examples are given in Figure 4.4.

4.1.5 Inoffensive Images from the Web

The last dataset with inoffensive images should represent common inoffensive Web images.
However, gathering images from the Internet that are not offensive but are displayed on
frequently visited websites is not easy. One problem is to define what usual pictures in the
Internet are. Alexa’s top 500 visited websites list3 is used to get the sites that are visited
most frequently. Since the list also contains websites with offensive content, we manually
deleted these sites from the list. A similar download method like for the download of
offensive images was executed. The so gathered images had to be checked if they contained
any offensive ones which were removed. Images that were smaller than 40 × 40 pixels were

3http://www.alexa.com/site/ds/top 500
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Figure 4.4: Sample images downloaded from Flickr which show people in different scenes
that are not offensive.

also removed because they were mostly small icons or thumbnails. As a whole 2,752 pictures
were gathered in this way. Examples are shown in Figure 4.5.

From all datasets with inoffensive images, this should be the most representative regard-
ing the application of Web content filtering. However, this should also be the most difficult
one. Many of the pictures in this dataset have only a small resolution and low quality. Also
artificial images are included and many pictures that contain people.

Figure 4.5: Samples of inoffensive images which were downloaded from the web

4.1.6 Offensive Videos from the Web

Offensive video material was also gathered by a random crawl over the web. The same
websites were used as for the download of offensive images. 932 adult content videos were
acquired this way. Most of these videos are small snippets of larger films and therefore just
contain one scene or even just one shot. The run-time of these videos ranges between ten
and thirty seconds. This is a big advantage, since methods to separate the videos into shots
do not have to be applied. Also, these videos should be representative for a large amount of
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pornographic films since a wide range of material is covered from amateur videos to videos
with a more professional production. Also the videos contain different scenes from sexual
actions to just naked people. All videos were scaled to a 320 × 240 resolution for reasons
presented in section 3.2. Since some of the used methods are performed on images, the
first step is keyframe extraction. A keyframe is a frame out of the video which displays a
meaningful shot out of a scene. Because only short snippets are available a regular extraction
of the keyframes is applied at every 50 frames. This corresponds to an extraction every two
seconds. As a whole 11,612 keyframes were extracted for the offensive video dataset. Some
sample keyframes are shown in Figure 4.6.

Figure 4.6: Some keyframes from offensive videos which were downloaded from the Web

4.1.7 YouTube Videos

To get a large variety of non-offensive videos, the online video portal YouTube was used
as source. On YouTube one can be (almost) sure to get lots inoffensive videos which are
already labeled. Just like the images from Flickr, YouTube videos are tagged. Videos with
the following tags were chosen to be downloaded:

• animals (cats, dogs)

• events (concert, dancing, demonstration, interview, singing, talkshow)

• nature (beach, desert, flower, mountain, hiking)

• people (hand, two people)

• sports (basketball, golf, sailing, soccer)

Again tags were chosen, that either relate to social events, and sports, and therefore contain
people, or videos that show nature shots. One serious disadvantage of community based la-
beling is the problem, that many videos are insufficiently or even wrongly labeled. Therefore
a video with the tag “Dog” might not even contain a dog at all. However, it is possible to
get a large amount of videos with different content. Another disadvantage is the amount of
videos in poor quality. Many of the videos are home made and therefore have poor quality.
Other videos are taken from TV shows which usually have good quality. This might com-
plicate feature extraction since many videos are therefore noisy. The videos are also much
longer than the offensive video snippets from the offensive websites. Therefore, snippets
ranging from 10 to 20 seconds were randomly sampled out of the YouTube videos. Like the
offensive videos, all videos are scaled to a fixed resolution of 320 × 240 pixels. Keyframes
were extracted in the same way as for the offensive videos. As a whole 2,663 videos, and
25,660 keyframes were gathered. Some samples can be found in figure Figure 4.7.
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Figure 4.7: Some keyframes from YouTube videos

4.2 Experiments for Classification of Offensive Images

This section deals with the experiments that were executed to see how well the detection of
offensive images works. First, the measure of how the classification results are compared is
presented. Then, the results for the skin ratio features are presented which are regarded as
a baseline system. The results of a decision tree and a SVM as classifier with these features
were compared. The following experiments deal with the performance of the bag-of-visual-
words approach, where the different descriptors for the local patches were compared. Also
an experiment is shown, where the number of training samples are evaluated. Finally, the
results are fused to see if the performance can be improved.

Several experiments were performed to measure the performance of the approaches that
were presented in the previous section. Because one wants to compare the results, an
appropriate measure of a classifiers performance is required. The classification rate (the
number of correctly classified samples divided by the total number of samples) is not an
appropriate measure because it does not relate the number of true and false positives. Table
Table 4.3 shows a general confusion matrix for the classification of offensive images to show
the relation of these numbers. The true positives (TP) are the number of correctly classified
offensive images and the true negatives (TN) are the number of correctly classified inoffensive
images. The false negatives (FN) are the number of inoffensive images which are classified
as offensive ones and the false positives (FP) are the number of offensive images which are
classified as inoffensive. Since one wants a measure that relates both true and false negatives,
the equal error rate is used. The equal error rate is the point where the false positive rate
(fp) equals the false negative rate (fn):

fp =
FP

FP + TN
(4.1)

fn =
FN

FN + TP
(4.2)

Therefore, the false positive rate gives the fraction of incorrectly classified inoffensive
images and the total number of inoffensive images. The false negative rate is the number of
offensive images that are classified as inoffensive divided by the whole number of offensive
image. The equal error rate is the point where both of these rates balance out. So if two
classifiers are compared, the one with the smaller equal error rate is preferred.

Table 4.3: Confusion Matrix for classification of offensive images

true class predicted class
Offensive Inoffensive

Offensive TP FN
Inoffensive FP TN
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Each of the presented approaches is tested on seven different stets which are built on
the mentioned datasets. The first four experiments are performed on the standard dataset
to see how well the approach works compared to other existing approaches. The following
experiments are performed on the downloaded offensive image material with each of the
inoffensive image datasets as inoffensive material. These experiment should tell how well
the classification process can work in the real world.

4.2.1 Skin Segmentation Approach

Skin features with decision tree classifier

The first experiments were performed with the skin features that were presented in section
3.1.1. For each of the sets a decision tree is built on data from the training set and evaluated
on a test set. The training set contained 1,000 images from each class. Due to the different
sizes of the datasets, the test set contained 1,000 images per class for the Corel, Flickr and
Web images, and 500 inoffensive images of the standard dataset. The results can be found in
Table 4.4. The measure is the equal error rate which was presented in the previous section.

Table 4.4: Equal error rates for experiments on different datasets using skin features and
decision tree classifier

Dataset EER
CB-D 0.0501

CA-CB-D 0.0720
AB-CA-CB-D 0.0641

ALL-D 0.0650
XXX-Corel 0.0890
XXX-Flickr 0.1085

XXX-Web Images 0.1450

The results show the best performance on the standard dataset with only the porno-
graphic images regarded as offensive and the nature shots as inoffensive. The least perfor-
mance was achieved by classifying offensive images from the Web against inoffensive images
from the Web. These results are not surprising, since the first set was expected to be the
easiest separation task while the last one was expected to be the hardest one. The Corel
images are a little bit better to distinguish from offensive images than the images from
Flickr. The performance of experiments on the standard dataset is better than on the other
datasets. This further supports the assessment that the standard dataset’s images are not
much representable of real world data.

An advantage of a decision tree classifier is that separation rules can be easily created
and that these rules can be viewed and interpreted. Therefore, some of the trained trees are
shown in Figure 4.8. The features are as follows: NumCC is the number of connected com-
ponents, SizeLargestCC is the size ratio of the largest connected component, SkinCCRatio
is the ratio of skin pixels after removing all but the ten biggest connected components, and
SPRatio is the skin probability ratio. All of the trees are pruned further than the ones that
are used for the classification to be able to display them. The decision rule is shown inside
the node. If the test is true for the given feature value, the left descendant node shows the
next rule, the right descendant node otherwise. The terminal nodes are displayed with a
rectangle and show the assigned class label.
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inoffensive

inoffensive

inoffensive

inoffensiveoffensive offensive

SkinCCRatio < 0.18

SkinCCRatio < 0.09 NumCC >= 720

NumCC >= 346 SPRatio < 0.13

(a) Trained decision tree on CB-D

offensive

offensive

inoffensive inoffensive

inoffensive

SPRatio < 0.23

SizeLargestCC < 0.09 NumCC >= 423.5

NumCC >= 174

(b) Trained decision tree on XXX-Flickr

inoffensive

inoffensive

inoffensive

inoffensive

offensive offensive

offensive

SPRatio < 0.26

SizeLargestCC < 0.17 SizeLargestCC < 0.17

NumCC < 36 NumCC < 14

SizeLargestCC < 0.64

(c) Trained decision tree on XXX-Web Images

Figure 4.8: Some trained decision trees with skin features on different datasets
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The tree trained on the standard dataset Figure 4.8(a) uses the number of skin pixels
after connected component analysis in the first rule. If this value exceeds a threshold,
the number of connected components is analyzed. If the number of connected components
is high, the image is regarded as inoffensive. This may be reasonable, since in an image
with a high number of skin components, it may be more likely that these originate from
some kind of background and not from human skin. The final feature in this branch is the
skin probability over the whole image. If this probability is high, the image is classified
as offensive, otherwise not. If the initial check for the amount of skin after the component
removal is below the threshold, the image is more likely to be inoffensive. Only if the number
of connected components is low, the image may be classified as offensive. This rule should
capture the whole skin areas which should consist of few connected components.

Figure 4.8(b) shows a trained decision tree on offensive Web images and Flickr images.
Here the most important feature is the skin probability over the whole image. This can
be explained with the fact that the inoffensive images from Flickr also contain amounts of
skin. So the probability of skin over the whole image is more important than just the size
of the largest skin component. A portrait image, for example, has a huge skin component,
but cannot be regarded as offensive. Another difference to the first tree, is that a higher
number of connected components leads to a classification as an offensive image. A reasonable
explanation for this is that also partly dressed people are shown in the offensive images. This
leads to a higher number of connected skin components. Large parts of skin might also be
separated by shadows or too much illuminated which may occur more frequently in these
images, since many amateur shots are included. Even another explanation is that the Web
images show more skin color like background than the pictures from the standard dataset,
especially in offensive images. The remaining rules are also reasonable. If the largest skin
component is small, the image is more likely to be inoffensive.

The last tree (Figure 4.8(c)) is trained on offensive and inoffensive Web images. Here
the skin probability is the most prominent feature again. Just like in the second tree,
another important feature is the size of the largest skin component. If this is high, the
image is more likely to be offensive. Interesting, however, is the much lower threshold by
rules with the number of connected components. This can be explained with the fact, that
the inoffensive Web images are usually of smaller size than the inoffensive images from other
sources. Therefore, the total number of components is also lower. The rules themselves do
not differ much from the previous tree.

In summary, the tree trained on the standard dataset uses different rules than the ones
trained on Web images and Flickr images. It is interesting but also reasonable, that both
trees which use the Web images as offensive class have pretty similar rules and differ only
in the threshold values. Another interesting fact is that the skin ratio (the number of pixels
denoted as skin before connected component removal) is not taken into account for the first
rules at all. Actually this is positive, since this feature also contains a lot of noise from the
background and the removal of components is performed to reduce this noise. The assurance
that this feature is not used in the first rules tells that it is not very important. However, it
might be used for further rules, which are not displayed in the pruned trees.

To conclude the experiments from the decision tree classification, it is important to see
which pictures are misclassified. Samples of wrongly classified offensive images can be found
in Figure 4.9. These samples show some of the typical reasons why the classification fails.
One reason is that although sexual content is shown, there is not much skin presented in
the image (Figure 4.9(a)). The same problem appears if a naked person is present, but
displayed only small (Figure 4.9(b)). In these cases the skin detection itself works, but
the amount of skin is too small, causing the classifier to fail. Another problem appears
when the skin detection itself fails. Reasons for this may be due to overshadowing of skin
regions (Figure 4.9(c)), too much illumination which lets the skin appear as being white
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(Figure 4.9(d)), or due to illumination sources which alter the skin color into other colors,
for example yellow (Figure 4.9(e)). Although the decision trees have rules that should cope
with some of these problems, these rules fail in extreme cases.

Typical misclassified inoffensive images are shown in Figure 4.10. The reason why these
images are regarded as offensive is because large areas in these images are detected as
skin. Common examples are: sunsets (Figure 4.10(a)), fur of animals (Figure 4.10(b)),
rocks, wood, some metals, etc. The second reason for false positives is the occurrence of
large skin regions, although the image is not offensive. These cases include portrait images
(Figure 4.10(c)) and partly dressed people (Figure 4.10(d)).

Concluding the results achieved with skin features used for classification with a decision
tree led to results that are similar to the results of existing approaches like the approach of
Jones [22], and the approach of Rowley [35]. The presented method gets similar classification
results as well as similar problems for the misclassifications. The results show, that a baseline
system was built with roughly the same performance as other existing techniques that are
also based on skin detection.

(a) (b) (c) (d) (e)

Figure 4.9: Examples of typical offensive images that are misclassified by the skin ratio
features: a) people being mostly dressed, b) the displayed person is too small compared to
image size, c) the image is overshadowed, d) the image is too much illuminated, and e) the
image is illuminated by a yellowish tone

(a) (b) (c) (d)

Figure 4.10: Examples of typical offensive images that are misclassified by the skin ratio
features: a) a sunset, b) animal fur, c) a portrait image, and d) an image with much skin
although it is not offensive

Skin Features with SVM Classifier

In additional experiments we compare the performance of a SVM classifier to the perfor-
mance of a decision tree classifier in use with the skin features. Because the underlying
methods differ, the features and the experiments have to be adapted for the SVM. First, the
number of connected components is normalized for all features so that it falls into the range
between 0 and 1 like the other features. This step is needed because the kernel function
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represents a distance measure. If one value in the feature vector dominates the others, the
distance measure will not work correctly. The second adaption is needed because the SVM
is a probabilistic classifier and not deterministic like the decision tree. If a decision tree is
trained and tested several times on the same training and test sets, the classification results
are always the same. If the classification is performed using a SVM the results, however,
may differ. To get reliable results, we perform the experiments in the following way. For
each experiment, the dataset is randomly split into a training set which contains 1,000 sam-
ples and a test set which contains 500 samples. The experiments are repeated ten times.
Table 4.5 shows the mean equal error rate and the variance of the equal error rate over ten
experiments on each dataset. The SVM performs better on the standard dataset while the
decision tree performs better on the downloaded images. The performance of the classifiers
on downloaded offensive and Corel and Flickr images are roughly the same. This can be
explained with a different distribution of the features in the feature space of the different
sets. This may lead to a better separation with a certain classifier. Regarding the results
from these experiments, the SVM performs better on data that was categorized to be easier
to separate while the decision tree performs better on real world data.

Concluding the classification with features which are based on skin detection in an image,
we managed to implement a system that classifies offensive images. The previous results
were not improved, which was not the goal. This system should be regarded as a baseline
system. Recent publications by Deselaers [12] showed that a bag-of-visual-word approach
leads to better results than just using skin color information.

Table 4.5: Performance of SVM and decision tree on different datasets measured with mean
and variance of the equal error rate over ten runs. The SVM performs better on the standard
dataset, while the decision tree shows a better performance on the experiments with offensive
Web images.

n = 10 SVM DT
Dataset µ-EER σ-EER µ-EER σ-EER
CB-D 0.0266 0.0003 0.0501 0.0026

CA-CB-D 0.0452 0.0007 0.0795 0.0004
AB-CA-CB-D 0.0512 0.0003 0.0580 0.0004

ALL-D 0.0467 0.0005 0.0532 0.0002
XXX-Corel 0.0568 0.0002 0.0568 0.0008
XXX-Flickr 0.0908 0.0006 0.0874 0.0012

XXX-Web Images 0.1790 0.0019 0.1297 0.0019

4.2.2 Bag-of-visual-words Approach

The experiments using the bag-of-visual-words approach aim for two things: First, to see
how much the performance can be improved to the skin detection based features and second,
which descriptor of the local features achieves the best performance. As classifier a SVM is
used, therefore setup is similar to the one used for classification with SVM and skin features.
Each experiment is performed ten times on the sets with randomly selected training sets with
1,000 images and test sets containing 500 images. The codebooks for the different descriptors
are learned from all available images. Therefore, the codebooks are not specialized on the
different datasets. The mean and variance of the equal error rate are used again to measure
the performance.

The results on the standard dataset can be found in Table 4.6. For all descriptors the
CB-D experiments achieved the best results, while ALL-D was the hardest to separate.
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Table 4.6: Classification performance of different local feature descriptors on the standard
dataset, measured with mean and variance of the equal error rate over ten runs. The DCT
descriptor shows the best performance on all of the four experiments.

n = 10 DCT PCA SURF CSURF
Dataset µ σ µ σ µ σ µ σ

CB-D 0.0118 0.0001 0.0146 0.0004 0.0358 0.0003 0.0196 0.0003
CA-CB-D 0.0340 0.0005 0.0363 0.0002 0.0618 0.0005 0.0396 0.0002

AB-CA-CB-D 0.0362 0.0004 0.0378 0.0004 0.0567 0.0009 0.0436 0.0003
ALL-D 0.0448 0.0015 0.0439 0.0003 0.0612 0.0003 0.0510 0.0003

Table 4.7: Classification performance of different local feature descriptors on downloaded
offensive images, measures with mean and variance of the equal error rate over ten runs.
Again, the DCT descriptor shows the best performance on all experiments.

n = 10 DCT SURF CSURF
Datasets µ σ µ σ µ σ

XXX-Corel 0.0274 0.0005 0.0649 0.0007 0.0514 0.0001
XXX-Flickr 0.0608 0.0010 0.0822 0.0008 0.0685 0.0005

XXX-Web images 0.0635 0.0007 0.1008 0.0008 0.1110 0.0006

Overall the best performance was achieved by the DCT descriptor and the PCA descriptor
was just marginally worse. ColorSURF was better than SURF which is reasonable since
SURF does not include any color information. As a whole the bag-of-visual-words approach
leads to better results than the skin detection approach. Of all descriptors only SURF per-
formed worse than the skin features. This leads to the conclusion that color is an important
information for classifying offensive images and should not be omitted.

The results for the classification of the downloaded offensive images (Table 4.7) are
similar. The PCA descriptor is missing, since its performance on the standard dataset was
almost the same as the DCT descriptor. The ColorSURF descriptor performs better than
the SURF descriptor, except for the experiment with the inoffensive Web images. A possible
explanation is the occurrence of gray scale or artificial images in this dataset. Also the low
image quality might play an important role for the worse performance of the ColorSURF
descriptor on this data.

Concluding these experiments, the bag-of-visual-words approach shows a clear improve-
ment over the skin detection approaches. From all descriptors, the DCT descriptor performs
best.

Number of training samples

One problem that frequently arises during the training of a classifier is the question of
how many training samples are needed. To measure the influence of the number of training
samples, the following experiment was conducted. An increasing number of training samples
is used to train a SVM with the DCT features. The DCT descriptor is used, because it was
performing best. Images for the offensive class are taken from the Web images while the
inoffensive images are from the Corel set. The choice for the inoffensive pictures was made,
because this set contains more images than the other sets. Sample numbers are 5, 10, 15,
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25, 50, 100, 250, 500, 1000, 2000 per class. Each training per sample count is repeated five
times with a newly, randomly generated set. Testing is performed on a set containing 500
images from each class. A plot with the equal error rates and the mean equal error rate can
be found in Figure 4.11. It shows that the equal error rate decreases while the number of
training samples increases. There is a significant increase in the classification performance
from an error rate of 30% to 5% between 10 and 200 samples. The results can be improved
to an equal error rate of 2.5% by using 20 times more training samples. Since we used 2000
samples for each training process the results should be accurate. However, adding more
samples might give a slight improvement.
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Figure 4.11: The plot shows equal error rates for different numbers of training samples for
the bag-of-visual-words approach with the DCT descriptor.

4.2.3 Late Fusion of Results

In another experiment a fusion of the skin detection approach and the bag-of-visual-word
approach with the DCT descriptor is investigated. For creating scores with both methods, a
SVM classifier is used. The method for the late fusion has already been described in section
3.1.3. Because we learn weights for each feature, an additional validation set is needed
to estimate the final performance. The dataset is split into a training set which contains
1,000 samples, a validation set with 500 samples, and a test set with 500 samples. Each
experiment is performed ten times with newly randomly created training, validation, and
test sets. The measure is again mean and variance of the equal error rate. The results are
given in Table 4.8. It can be seen that the fusion achieves an improvement in all experiments
over the previously existing results. The mean weights for each experiment are shown in
table Table 4.9. For most of the datasets, the weight is bigger for the DCT descriptor
than for the skin features, indicating that its influence on the final result is higher. This is
reasonable, since the performance of the DCT features by themselves was better than the
skin features alone. However, the skin features are not neglected and contribute to the final
classification result.
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Table 4.8: Classification performance of fusing DCT and skin features, measured by mean
and variance of the equal error rate over ten experiments. On each dataset, the fusion
performed better than the classification with single features.

n = 10 DCT Skin Fusion
Dataset µ-EER σ-EER µ-EER σ-EER µ-EER σ-EER
CB-D 0.0106 0.0000 0.0266 0.0003 0.0088 0.0000

CA-CB-D 0.0380 0.0002 0.0452 0.0007 0.0288 0.0003
AB-CA-CB-D 0.0412 0.0009 0.0512 0.0003 0.0324 0.0007

ALL-D 0.0468 0.0012 0.0467 0.0005 0.0312 0.0003
XXX-Corel 0.0274 0.0005 0.0568 0.0002 0.0238 0.0003
XXX-Flickr 0.0608 0.0010 0.0908 0.0006 0.0574 0.0008

XXX-Web Images 0.0635 0.0007 0.1790 0.0019 0.0620 0.0005

Table 4.9: The mean of the learned weights of the late fusion of DCT and skin features. The
weight for the DCT descriptor is larger than the weight for the skin feature in most of the
experiments.

Fusion weights
Dataset w1 w2

CB-D 0.65 0.35
CA-CB-D 0.55 0.45

AB-CA-CB-D 0.585 0.415
ALL-D 0.49 0.51

XXX-Corel 0.515 0.485
XXX-Flickr 0.695 0.305

XXX-Web Images 0.72 0.28

To conclude the results of the classification of offensive images, Receiver Operating Char-
acteristics (ROC) curves are presented. ROC curves plot the false positive rate against the
true positive rate [15]. They are used to compare different classifiers. Since the perfect
classifier has only true positives and no false positives, it is represented by a line between
(0,1) and (1,1). The diagonal line between (0,0) and (1,1) can be seen as a classifier that
randomly guesses so it generates the same amount of true and false positives. A classifier
performs better than another, if its curve is closer to the line of the perfect classifier. ROC
curves can be generated out of the classification results in the following way. Both the de-
cision tree and the SVM create a score for each instance of belonging to offensive images.
A threshold is then utilized to assign a label. For example if the score is higher than 0.5
the image is offensive. With different values for this threshold, different points in the ROC
space can be created.
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Figure 4.12: ROC curves for different descriptors on the standard dataset

Figure 4.12 shows the ROC graphs of all experiments performed on the standard dataset
for each descriptor. The graphs basically show the same results as the tables before. From
the single descriptors, the DCT descriptor shows the best performance. The skin features
with both classifiers and the SURF features show the worst performance. The fusion of
DCT and skin feature gives an improvement to all classification results. The same can be
seen for the experiments on the downloaded offensive images in Figure 4.13.

In summary the experiments showed, that both the skin detection and the bag-of-visual-
words approach can cope with previously existing approaches. The performance can further
be improved if a fusion of both techniques is used. However, the performance is highly
dependent on the data. Artificially created sets were much easier to classify than the real
world data.

4.3 Classification of Offensive Videos

This section deals with the classification of offensive videos. The experiments are divided
into experiments that are based on keyframes and experiments that are based on motion
features. Finally, it is investigated if a fusion of both levels improves the classification
performance. To create sets for training, validation and testing, the whole dataset was split
into five sets. Each sets contains roughly 200 videos of both classes. It was not possible
to create sets of the exact same size, since the videos do not have the same length. Since
the dataset for offensive videos contains small samples out of larger films, it was assured
that all samples from one film are in the same set. A SVM was used as classifier again.
Every experiment was repeated five times on new randomly created combinations of the
sets. Three sets were combined for the training set and one set was used for testing and
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Figure 4.13: ROC curves for different descriptors on offensive images of the Web

validation. The performance was measured by mean and variance of the equal error rate.

4.3.1 Classification Based on Keyframes

The first experiments on the video data were performed on the keyframes. Since the DCT
descriptor showed the best performance for the bag-of-visual-words approach, we use only
this descriptor for these experiments. Additionally, the performance of skin features was
evaluated using also the SVM classifier. Table 4.10 shows the mean equal error rate and the
variance of the equal error rate over five runs. The visual words approach clearly outperforms
the skin features. Compared to the previously taken experiments on offensive images, the
results are worse for both methods.

There are several reasonable explanations for this behavior. First, one of the most
prominent reasons for misclassification of offensive keyframes is that the persons in the
videos are often partly dressed (Figure 4.14(a), Figure 4.14(b)). Therefore skin color based
features are of limited use. Another reason are poor lighting conditions, e.g the video is
too dark (Figure 4.14(c)) or too bright. Also some videos have very poor quality which also
complicates the detection of skin (Figure 4.14(d)). Basically, these are the same reasons as
for the failure of classification of offensive images. However, extreme cases apply more often
for the video data. This can also be compared to the performance on Web images, where
the recognition rate was less than for the standard dataset.

Misclassification of inoffensive keyframes has also similar reasons as misclassification of
inoffensive images. The main reason is the occurrence of large skin patches although they
are not offensive, e.g. a face (Figure 4.15(a)), or hands (Figure 4.15(b)). Furthermore,
images that contain many skin-like colors are often misclassified. The fire in Figure 4.15(c)
is one example. Like for the offensive images, the poor quality might be a reason. One



4.3. CLASSIFICATION OF OFFENSIVE VIDEOS 71

keyframe of a video with poor quality (e.g. poor illumination, or poor resolution) is shown
Figure 4.15(d) were a reddish tone is added to the image.

Table 4.10: This table shows the mean and variance of the equal error rates over 5 runs for
keyframe-based offensive video classification with DCT and Skin features. The DCT achieved
better results than the skin features.

Descriptor µ-EER σ-EER
DCT 0.0988 0.0021

Skin (SVM) 0.1835 0.0064

(a) (b) (c) (d)

Figure 4.14: Some usually misclassified keyframes from offensive videos: a) and b) exposed
skin only visible in small amounts, c) the frame is too dark, and d) the frame is too bright
and the overall quality is low.

(a) (b) (c) (d)

Figure 4.15: Some usually misclassified keyframes from inoffensive videos: a) a face, b)
hands, c) an explosion, and d) many persons. All show large areas with skin like color.

4.3.2 Experiments for Periodicity Detection on a Small Dataset

The periodicity features are first tested on a subset of the whole data. Their goal is to detect
periodic motion patterns in offensive videos which should correspond to scenes where people
have sex. Because not all offensive videos show sex scenes, a specialized dataset is used for
these experiments. The set consists of 161 offensive videos which show only sex scenes and
200 randomly selected YouTube videos. Each set is split up into training and test sets with a
75:25 ratio. Although these experiments are primarily performed to evaluate the periodicity
features, the other approaches are applied as well to get comparable results.

A decision tree classifier is used for the PeriodicityWin features (see 3.2.2) to see the
influence of the different features in the classification process. Figure 4.16 shows the resulting
tree, which was built on features extracted from 2,002 offensive, and 1,994 inoffensive video
windows. In the tree, per x denotes the estimated periodicity for the x-direction, var x
its variance, and area x the area between the line through the ACFs local maxima and
the line through the ACFs local minima. per y, var y, and area y denote the same for
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area_y < 27.47
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per_x < 19.5

area_x < 38.8var_x < 1.664

area_y < 15.58

area_x < 37.69

Figure 4.16: A decision tree for the PeriodicityWin features which has been trained on a
small sample set. Sliding windows in offensive videos are recognized, if the area between the
lines through the local maxima and minima in the ACF of the mean motion signals is big,
and if the motion signals have short periods with little variance.

the y-direction. The first split is done according to the area y which marks it as the most
important feature. The second split is either done with the area feature of the x-direction,
or the periodicity of the mean y-motion. Basically, the rules generated are as expected.
Sliding windows in offensive videos are recognized as having large areas between the lines
through their ACFs extrema and short periods with little variance.

Table 4.11 shows the classification results using different features and classifiers. A
support vector machine is used for the DCT and Motion Histogram descriptors as well as for
the skin and periodicity features. The PeriodicityWin features are classified on the window
level with the decision tree displayed in Figure 4.16 and fused for the video level utilizing the
three different methods presented in the approach section. PeriodicityWin-MAX denotes
the maximum vote, PeriodicityWin-AVG the average vote, and PeriodicityWin-AVGMAX
the combination of both votes.

The best performance is shown by the DCT descriptor with the bag-of-visual words
approach. Its performance is even better than the performance on the whole dataset which
was presented in the previous section. The same can be seen for the skin detection method
whose performance is still worse than the DCT descriptor, but the classification rate on the
reduced dataset is better than for the whole set. This can be explained by the fact, that the
offensive videos contain only sex scenes. Because of this, there is more skin color present in
the frames, which makes the separation using color features easier.

The second best performance is achieved by the motion histograms. Using the periodicity
detection on the whole video is clearly the worst approach regarding its equal error rate.
Periodicity detection on sliding windows performs generally better than this method. The
average and maximum plus average vote of the fusion techniques show the best performance
which is an improvement to the normal periodicity detection, but still worse than the motion
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Table 4.11: Classification performance of different descriptors for the specialized dataset
measured with the equal error rate. The best performance is achieved by the DCT descriptor.
The periodicity show the worst equal error rate, while the PeriodicityWin features perform
better. Of all motion related descriptors are the motion histograms performing best.

Descriptor EER
DCT 0.0325

Skin (SVM) 0.1325
Motion Histogram 0.078

Periodicity 0.21
PeriodicityWin-MAX 0.15
PeriodicityWin-AVG 0.11

PeriodicityWin-AVGMAX 0.11

histograms or even the DCT descriptor.
Reasons for the poor performance of the periodicity features include that the features

are not robust enough against small breaks in the motion signal. Large camera movement,
motions in other areas of the frames which do not belong to the actual periodic movement, are
some events the periodicity feature cannot cope with. Therefore, the periodicity detection is
noisy for complete videos. Using the sliding window approach should be more robust against
these cases, which can be seen by the improved equal error rate. The average vote shows the
best performance for the PeriodicityWin features. It is more stable against periodic motions
occurring in windows of inoffensive videos. Applying a maximum vote increases the false
positive rate since a video is classified as offensive, if a single window is labeled offensive.
The combination of both votes did not improve the equal error rate further.

However, the performance of the PeriodicityWin feature is still worse than using motion
histograms. One reason for this is that the periodicity features cannot reliably detect periodic
patterns, if the motion only occurs in a small area of the frame. If the camera is zoomed out,
this is often the case. Another problem is the extraction of motion vectors itself. The quality
of the extracted motion vectors highly depends on the image quality [32]. Some of the videos
in the dataset, however, have very low quality. Further, the extraction of motion vectors
works better for textured image regions. Skin areas, in contrast, are usually smooth and have
little texture, which complicates a reliable motion vector extraction since most movement
occurs in the skin areas. The motion histograms capture the different occurring motion
patterns in a better way. They express different motion patterns at different positions.
Therefore, they should be more redundant to noise.

4.3.3 Classification of Offensive Videos Based on Motion Features

The previous section presented the results of motion related features on a smaller dataset
to prove that the approaches work. While the motion histogram performed better than the
PeriodicityWin features, the PeriodicityWin features showed, that they are able to capture
periodic motion patterns. This section covers experiments of motion features on the larger
dataset which are performed in the same way as for the smaller dataset. The PeriodicityWin
features use a decision tree classifier for the video windows and afterwards one of the three
fusion votes that were presented earlier. The remaining features are classified with a SVM.

Table 4.12 shows the classification results, where motion histograms show the best perfor-
mance. Periodicity detection on the whole video, performs badly, while the PeriodicityWin
features show an improvement to the normal periodicity detection. Reasons for this behavior
were already presented in the previous section. Additional reasons evolve out of the com-
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position of the datasets themselves. First, not all offensive videos contain sex scenes, and
therefore there are no typical periodic patterns present. YouTube videos may have periodic
motion, for example in dancing people in music videos, the rhythmically waving of arms
in a concert video, or the regular ball motion in a basketball video. For these reasons, the
periodicity detection on a whole video is of no use in classifying offensive videos.

For the PeriodicityWin features, the average vote proved to be the best fusion rule. This
is the same result as for the smaller dataset. While using windows for periodicity detection
is still an improvement over using the complete video, the overall performance is pretty
low, compared to the motion histograms. The histograms features themselves, still perform
worse than the DCT features based on the keyframes.

ROC curves of all used approaches are shown in Figure 4.17. The curves show the same
result as the equal error rates. Using a keyframe based classification with local patches
described with DCT, shows the best performance of the single features. Periodicity detection
on the whole video and the maximum vote for fusing periodicity windows perform worst.
The curve for PeriodicityWin-MAX contains only few sample points, because each final score
corresponds to one terminal node in the decision tree. Since there are not much terminal
nodes present, the curve is not so fine grained as the other ones.

Table 4.12: This table shows the classification results of motion related features over five
runs. The measure is the mean and variance of the equal error rate. Motion histograms are
performing best.

Descriptor µ-EER σ-EER
Motion histograms 0.1252 0.0104

Periodicity 0.3785 0.0062
PeriodicityWin-AVG 0.2833 0.0017
PeriodicityWin-MAX 0.3449 0.006

PeriodicityWin-AVGMAX 0.3045 0.0056

4.3.4 Late Fusion of Results for Video Classification

The final experiments investigate the use of a late classification of previously created results.
To do this, the same method is used as for the late fusion for image classification. During
each of the five performed runs, a model is trained on the training set and classification
scores are created for each sample in the validation set. These scores are used to learn the
weights for the summation. The final fusion results are created for the test set, by applying
the models first, and fusing them afterwards with a weighted sum, according to the learned
weights. Since the whole dataset was partitioned into five sets, three of these are used for
training, one for validation, and one for testing.

Table 4.13 gives the final results for five runs. Both keyframe based approaches are
fused with motion related features, and the fusion of motion histograms with each of the
PeriodicityWin features is evaluated as well. The overall best result is achieved by the fusion
of DCT and motion histograms, which even outperforms the previously best performance
by using only the DCT descriptor. Fusing DCT with PeriodicityWin did not improve the
results significantly. It is still better than using only the periodicity detection, but only
slightly better than the DCT and only by using the average vote for the window scores. The
improvement for both other combinations can be neglected.

Similar results can be seen for fusing the skin features with motion features. Using
motion histograms gives a serious improvement over using only the skin features. However,
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Figure 4.17: The ROC curves show the best performance of the DCT descriptor on the
keyframe level, for the classification of offensive videos.

the improvement is not as strong as using only motion histograms without fusion. Fusion
with PeriodicityWin performs worse still, and only the average vote leads to better results
than the single skin features. The fusion of motion histograms with PeriodicityWin features
did not achieve an improvement either. As for the single descriptors, Figure 4.18 shows
ROC curves for all evaluated fusions. The plot shows the superior performance of fusing
DCT with motion histograms while the other fusions show only little improvement, if any.

Table 4.13: This table shows the results for the late fusion of different descriptors for clas-
sification of offensive videos measured by mean and variance of the equal error rate over
five runs. The fusion of DCT and motion histograms is an improvement to both single
descriptors.

Fusion µ-EER σ-EER w1 w2

DCT Motion Histograms 0.0604 0.0027 0.54 0.46
DCT PeriodicityWin-AVG 0.0856 0.0018 0.45 0.55
DCT PeriodicityWin-MAX 0.0945 0.0032 0.45 0.55
DCT PeriodicityWin-AVGMAX 0.0936 0.003 0.45 0.55
Skin Motion Histograms 0.1097 0.0119 0.59 0.41
Skin PeriodicityWin-AVG 0.1743 0.0076 0.56 0.44
Skin PeriodicityWin-MAX 0.2002 0.0252 0.56 0.44
Skin PeriodicityWin-AVGMAX 0.1833 0.0168 0.56 0.44

Motion Hist. PeriodicityWin-AVG 0.1087 0.0054 0.45 0.55
Motion Hist. PeriodicityWin-MAX 0.1093 0.005 0.45 0.55
Motion Hist. PeriodicityWin-AVGMAX 0.1186 0.0076 0.45 0.55
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Chapter 5

Conclusion

In the final part of this work a short summary of the results is presented and an outlook of
possible future work is given. In previous chapters, a variety of approaches for adult content
classification were developed and tested on different data. Also, samples and reasons for
misclassifications were given. In the following section, these results are summarized and
an interpretation of the most important insights is illustrated. The second part covers
some basic ideas of improving the approaches and other possible future work in the area of
classifying offensive material.

5.1 Summary of Methods and Results

In this work, several methods for classifying offensive images and videos were presented. For
image classification, two approaches were shown: one is based on skin detection, the other
one uses the bag-of-visual-words method where different descriptors for local image patches
were compared. The latter showed a better performance for both the standard dataset
and the Web images, while the first one can be seen as a baseline system with a similar
performance to the state-of-the-art. Among the descriptors for image patches, the DCT
descriptor proved to be the best achieving an equal error rate of 0.01. SURF showed the
poorest performance, because it does not include color information. Also, the classification
results heavily depend on the data which they should separate. On the dataset which was
presented by Kim [25] better results could be achieved than for real world Web images.
Video classification has been divided into keyframe based classification and classification
based on motion information. Results show that using additional motion information helps
to improve the classification performance. This section presents the most important results
and gives explanations for these.

First, color information is of high importance for the classification of offensive material.
The SURF descriptor did not achieve the classification results of the other methods, which
use color. While this result was already mentioned in [12], it is nevertheless important. One
characteristic of offensive images is the presence of skin which cannot be expressed by de-
scriptors which only use gray scale. For video classification, the motion features alone could
not achieve the performance of the keyframe based methods, which use color information.
This is a further indication that color is the most important feature for classification of
offensive material.

Second, both the skin based method and the bag-of-visual-words approach show draw-
backs if skin appears in an unusual fashion. Offensive images are usually misclassified if too
little skin is present in the image, or it cannot be recognized. Reasons for this include too
much or too little illumination, an overshadowing of the skin area, or simply the fact that
the persons wear too many clothes. On the other side, inoffensive images are usually labeled
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offensive, if they show objects whose color resembles skin color, or if they contain large areas
of skin, although the image is not offensive. The latter is often the case for portrait images,
images that show many people, or images that show partly dressed people in an inoffen-
sive way. Both approaches have similar misclassifications, although the bag-of-visual-words
approach shows fewer misclassifications.

Third, the image quality is important for accurate classification. The classification per-
formance on the standard dataset was higher than on Web images. Web images tend to have
a lower quality regarding resolution and compression than the images from the standard set.
Wrongly illuminated images are more often present in the Web images, because many im-
ages are made by amateurs. Also these images show much more variety in the displayed
scenes. Image quality also is responsible for decreasing classification results for keyframes
of offensive and YouTube videos compared to classification results on offensive images.

Another result is that combining color and motion information helps to improve clas-
sification results on offensive video data. Periodicity detection works if a sliding window
approach is applied. Motion histograms achieve a better result, because they are able to
combine information about the location and the characteristics of motion. Also they are
more robust to noise. However, the combination of keyframe based techniques and motion
histogram show a serious improvement, which indicates that motion information can be
exploited to get better results.

5.2 Future Work

While the presented methods already achieved good results, there are still some issues,
which were addressed in the previous section. The periodicity detection was very prone to
noise. Extracting these features in a sliding window improved the results, but still had some
problems. Using another method than the ACF to find periodic patterns might improve
this approach. One possibility is the combination of periodograms and ACF presented by
Vlachos et al. in [44]. Also it might be interesting to evaluate the periodicity detection on
another dataset which has a better quality (resolution, compression rate) than the ones used
for this thesis, since the low quality is one reason for the occurring problems.

An interesting adaption to the periodicity detection would be to use only motion from
skin colored areas. Because the classification with skin features achieved the worst results
for these videos this might not be very promising. For another dataset, however, an im-
provement could be achieved. Another idea is to test the ability of finding scenes which show
sexual actions in larger movies. So far only short video clips from offensive websites were
separated from YouTube clips. The short offensive videos were mostly parts of larger films.
However, detecting sex scenes in larger films to filter or block them might be beneficial.

Incorporating additional, non-visual features might also improve the classification results
significantly. Examples for these are text features from web pages, tags of images, audio
streams in videos, etc. While this work is focused on visual information, other clues could
also be used to increase classification performance. The text features might be frequent
occurring words on offensive websites. Image tags contain meta information about the
image which if might give information about the displayed content. The audio stream of
sex scenes might, like the motion contain periodic patterns which if detected can help to
identify these kind of scenes.

Improving the results for image classification depends on the image material itself. One
of the most frequently occurring cases for false positives are portrait images. Adding a
face detection might get rid of this problem. This might also help to detect the number of
occurring persons in an image which might be a further feature for classification. Another
problem is the low image quality of Web images which complicates the extraction of useful
features. However, the most promising way to improve classification performance, is to
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fuse different approaches for a final result. Combining both skin and DCT achieved an
improvement, as well as combining image and motion features.

Of great benefit to this research area would be to have some representative dataset every
researcher could use. So far most researchers use their own data to train and test their
methods. Because of this, comparative results cannot be created easily. Therefore, a very
thorough evaluation has been performed on various datasets to get the results for this thesis.
The dataset, which was used in two previous papers, proved not to be representative enough
of real Web images. This is an important requirement, because the dataset should contain
samples of the final field of application. Problems might arise, since offensive data is often
copy right protected, or is even illegal in some countries.
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