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Figure 1: Examples of text occurences in natural scenery.

1 Introduction

We call the time we live in “the Information Age”, and while we may associate information primarily
with computer technologies, such as the internet and large databases, the real world around us is
filled with information like never before. Most prominently, information is manifested as text: It
is printed on signs, painted on the ground, glowing from advertisements or store signs. It is on
our book-shelves, on paper on our desks, on appliances and other products, on packaging, on our
clothes, and sometimes even etched into our skin. We suggest the reader to take a look around,
and try to spot all occurences of text around him- or herself. This may be more difficult than it
seems: Text has become so ubiquitous that we are often oblivious to its presence. Figure 1 shows
a collection of images that give examples of where text typically occurs in the real world.

Although we might be oblivious to most of the text around us, it is not alarming that it goes
unnoticed, as much of it carries no information that is relevant to us at that very moment in
time. On the other hand, text may carry information that we wish not to ignore: It can be a
warning on a sign, the contents of a package or a letter sent from a friend. This is all the more
frustrating when we cannot read the text, either due to a deficiency in sight, or the text being in a
language we do not understand. This is one of several scenarios where automatic text recognition
would come in handy: Instead of looking up word for word in a dictionary (which may be all the
more difficult if the characters are not from our native alphabet), the unknown text could simply
be photographed with a mobile device, and a text recognition engine would (hopefully) recognize
the text and display a translated version. Of course, such a recognition engine would have to be
capable of locating and reading text found in random photography. We shall call such a system a
“text reading system”:

Definition: A text reading system is a software system for automatically detecting and reading
scene text within an image (usually a photograph).

We have outlined automatic sign translation as one field of application for a text reading system.
This is just one of the many scenarios where a such a system would come in handy. Other scenarios
include:

5



• Text reading in large image databases: Many large image databases, such as the popular
photo-sharing sites found online1, need to organize the image data they aggregate to allow
users to search or group images. This is done by associating each image with a textual
description of its contents. Often this is done manually by a human (such as the photo
contributor), who annotates the image with a set of tags. In other cases, the filename is
used as a textual description, and in the worst case, no meaningful description is used at
all. However, in a study of 200 random images from the Flickr website, 55% of them were
found to contain text. In many cases, the text found in these images would have been a
meaningful addition to the textual annotation, and in any case it would have been better
than no annotation at all. An automatic text recogntion system for random imagery could
supplement photo annotations with the text found within the image.

• Video indexing: Just as in photo indexing, text reading could be used to index videos. This
could be done on a per-video level, or on a per-scene or per-frame level. For instance, such a
system would allow a viewer of a recorded video to jump to the first frame where “Midnight
News” occurs.

• Object meta-data: As stated before, many of our everyday products contain text on them,
whether it is the name of the product, the brand name, pricing, weight, or ingredients. A
text reading system could associate these products with meta-data found on the packaging.
Such meta-data could then again be used in an object-recognition system in order to make
a decision on which object class it is dealing with. A detected rectangle might not be as
meaningful as one supplemented with the detected words “TV Guide”. Object-bound text
information could also act as an identifier for certain items. This could be a license plate
number of a car, or a serial number on a product.

• Sign reading: In the example above, sign reading was used for translation. However, there
are many more potential uses for a sign reading system. For instance, coupled with speech
synthesis, signs could be read out-loud for the visually impaired. Together with map infor-
mation, the text on signs at a street intersection could be used to pinpoint the location of
the text recognition device. Sign text could also be used to update status information of a
dynamic system, such as a navigation system in a car: The system could warn the driver
when certain signs are detected, or update navigation data when an unexpected sign value
is read, such as the temporary reduced speed value at a construction site.

• Tracking: Text reading could be used to track objects or people that have a certain word
attached to them. For instance, a tracking system could use the player number on a jersey
as a feature for tracking team players in sports videos.

Despite remarkable advances in OCR technology in the past fourty years, the recognition of text
in photographs still poses a great challenge, and conventional OCR systems fail at the task. The
reason for this is that many OCR systems make assumptions about the input image that do not
hold for general photography. Text reading systems on the other hand must be able to deal with
varying text fonts, sizes and textures. Text may lie on complex backgrounds, may be rotated,
scaled or undergo perspective distortion. Furthermore, lighting conditions may greatly alter the
color of text and produce specular highlights. Section 1.4 deals with these challenges in more
detail.

In this work, a generic text reading framework for photographic images will be introduced, which
will be used to test various text detection and reading techniques. Also, a novel approach based
on geometric matching is introduced. The main contributions of this work are the following:

1see http://www.flickr.com or http://www.picasa.com
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• Using the proposed text reading framework with a variety of features and classification meth-
ods, several techniques are investigated and their performance on detection and recognition
of text in photographs evaluated. The goal is to help establish a “best practice” for text
reading in natural scenes. Common OCR techniques and lesser known ones are discussed,
covering a large domain of image processing and pattern recognition methods, and a quan-
titative comparison is provided. To our knowledge no such comparison has been performed
to date.

• Unlike most contributions in this domain that have performed tests on small-scale datasets
(usually provided by the authors), the tests in this work are conducted on a large scale
synthetic database of images, which simulate texture and distortions often found in real-
world photography. This will allows full control over font, color and distortion, and test
robustness of recognition methods against each of these transformations. Furthermore, the
recognition system is tested on real-world photographic images, provided by the well-known
ICDAR training and test sets of 2003 and 2005 [27, 26].

• Many publications focus on a single subtask of text reading, usually the character detection
phase only. The actual text recognition is then either omitted or conducted using standard
proprietary OCR software. Here, an analysis for the entire text reading process is provided
from start to finish. That is, the input of the system is a random photograph, and the output
is a set of words that appear in the image, along with their position and scale. No third-party
framework is involved in the process.

• Finally, a novel method of text recognition in random imagery is intoruced that applies a
powerful geometric matching technique called RAST. This will allow the classification of
characters within an image without any prior segmentation, i.e. the character detection
and recognition steps are unified into one joint process. This method of joint detection and
recognition is evaluated and compared to the performance of text reading using separate
detection and recognition steps.

It should be noted that the focus of this work lies not only on tuning a single text-reading approach,
but to provide a thorough component-based evaluation.

1.1 Outline

In the remaining sections of this chapter we will first give a brief overview of traditional OCR
for readers not familiar with the topic. Then a comparison between traditional OCR and text
reading in natural imagery is given, and the challenges involved are discussed. Section 1.5 gives a
more detailed explanation of how a text detection engine can be extended to a text reading engine,
and gives justifications for this extension. This chapter concludes with an overview of related
work. Section 2 deals with the architecture of the text reading framework used in this work.
After a general overview, the process of generating character hypotheses is explained, followed
by an outline of the filtering and grouping modules. Section 3 details the character hypothesis
generation process. It discusses the two main approaches used in this work - separate and joint
detection and recognition, and details the processing steps involved. The grouping algorithm is
discussed in section 4. All of the discussed methods are then tested on synthetic and real-world
data in Section 5, which also provides a detailed discussion of the results. Finally, section 6 draws
a conclusion of the work conducted here, and provides an outlook for planned future work.
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Figure 2: The typical processing steps of a traditional OCR engine.

1.2 Traditional OCR

Traditional OCR systems usually make the following assumptions on the text imagery they are
dealing with:

• Text is assumed to be dark on a bright background.

• Characters are machine-printed.

• Text is layed-out on straight horizontal lines, that are arranged in text blocks.

• Other than dark text and bright background, nothing is present on the image.

For readers unfamiliar with the text recognition process, a brief overview of the processing steps
are given here. Note that these may vary from system to system, but are usually present in at
least a similar form.

The input of an OCR image is usually a grayscale or color image, obtained from scanning a
document with a (flatbed) scanner. Scanners tend to produce sharper and higher resolution repre-
sentations of documents than digital cameras, though these are sometimes used instead. Once the
image has been digitized, it is binarized, i.e. converted to a black-and-white image, where black
pixels are the character pixels, and white pixels are the background. The image is then segmented
into single characters, which is usually done by a connected component analysis. From these single
characters, features are extracted, that have roughly the same values for representations of the
same character. These feature values are then classified to obtain a character class for each com-
ponent. The components are then grouped to words and sentences. A post-processing step may
apply statistical information or grammars to correct misclassifications. Figure 2 shows the typical
OCR pipeline incorporating the steps described here.

1.3 Text Reading in Photographs

Many of the assumptions made by traditional OCR systems do not apply to text reading systems
for photographic images. Obviously, such a system cannot assume that text is black on a bright
background. When dealing with text in photographs we must deal with the following challenges:
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(a) (b) (c) (d) (e)

Figure 3: Examples images of text in natural scenery, highlighting a few of the difficulties that
arise when dealing with such images.

• Text can appear in any color and texture on a background with any color and texture. Figure
3 (a) shows text with a complex texture on a noisy background. Thus, a binarization step like
in traditional OCR that separates text from background is very difficult to accomplish for
photographic text. Furthermore, segmenting by connected components will perform poorly
with textured characters, or characters that “flow” into the background, as image 3 (b) shows.

• While much of the text encountered in photos is machine-printed, it may be heavily stylized or
distorted. Various fonts, untypical for document use, are used frequently in advertisements,
product labels and logos. As these text labels should be unique to the brand or product,
they are often stylized, altered or use brand-specific fonts. Image 3 (c) shows an example of
brand text found in photos.

• While traditional OCR assumes text to be on a flat piece of paper and in frontal view, text in
photographs may be rotated in any direction, distorted by the perspective, and lie on curved
surfaces.

• Traditional OCR usually deals with high quality image representations obtained from a
scanner. A text reading system for photos on the other hand, must deal with noisy images,
possibly taken in bad lighting conditions with a hand-held device that produces low-resolution
images. Even if the camera is of high quality, the text may be far from the observer, so that
the camera captures the text in a small portion of the image only.

• Text in photos usually does not follow any standard layouts. In fact, as text may stem from
various sources (such as different signs), their layout may appear random for a recognition
system. Still, such a system must be capable of identifying characters and words that belong
to the same group, and those that are independent from one another.

• Unlike in scanned documents, text in photos may be partially occluded by another object,
as shown in image 3 (d), where the characters are partially occluded by a wired-fence. While
the possibility of recognition depends on the scale of occlusion, in minor cases a text reading
system should still be able to identify the characters.

• Images may contain a high amount of clutter, that is, many objets appear in the image, that
are not text. These objects may out-number the text elements by far. Image 3 (e) shows an
image with a high amount of clutter near a text string.

While many challenges presented above are inherent to dealing with text in photos, some challenges
are relevant for both traditional and photo text recognition. For instance, both systems may need
to deal with so-called linked and split characters. These occur when character data is incorrectly
segmented so that either multiple characters are segmented as one (linked), or a single character
is segmented as multiple ones (split). One way to avoid these problems is to avoid segmentation
altogether. In fact, such methods will be introduced in this work that are robust against these two
problems.
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Finally, some assumptions are made by a typical text reading system that are more relaxed than the
requirements for traditional OCR. Most notably, it is assumed that text in photos consists of a few
words only. Simple sentence structure is assumed, and no complex grammar analysis is performed
(though a dictionary is used to improve word recognition performance). Often punctuation is
simply ignored. The set of recognizable characters may be smaller than that of a document
OCR engine. For instance, for sign reading, a text recognition system will normally not require
recognition of mathematical symbols.

1.4 Text Detection and Text Reading

A common approach to solving the text reading problem is to first detect text within the image,
extract the detected text and apply a dewarping operation to remove any perspective distortion.
Then, the extracted text is passed to a third-party OCR engine for recognition. In this work
however, such an approach is not used. Instead, custom character recognition techniques are
implemented, specifically tailored to the task of text recognition in natural imagery. However,
with all the difficulties involved in text detection alone, it is appropriate to ask whether such an
extension to the more complex task of detection and recognition makes sense. After all, why should
a well-tested and finely tuned commercial OCR system not be used instead of a custom system
developed “from scratch”?

While the additional recognition task does indeed introduce new difficulties, it does bring along a
number of advantages that are worth evaluating. Specifically, the following benefits are given from
an integrated recognition module:

• The results of the recognition process can be re-used in the detection step. That is, the
recognition of certain characters may give rise to additional character bounding boxes. For
instance, if a partial string (according to some dictionary or heuristic) is found at a certain
location, the detection module could use this information to apply a more detailed search for
the missing characters.

• Since generic OCR engines require a binarized, non-distorted text image as input, text found
in natural scenery must be prepared for such an engine. This involves segmenting the text
string from the background, converting the text to black and white, and eliminating distor-
tion. Each of these processes may introduce error, and a significant amount of information
is lost by each of these steps. Hence, here recognition methods are used that adapt to the
image data, rather than vice-versa.

• Instead of looking for bounding boxes first and then applying character recognition to each
of these boxes, certain recognition techniques can be used on the entire image directly. The
detected bounding boxes are then generated along with the character hypotheses (joint de-
tection and recognition).

Some of the character recognition methods presented in this work are related to similar method
found in traditional OCR. Others are derived from methods used primarily in shape matching.
While these methods may not be able to compete with commercial OCR systems on textual
documents, they are far more adequate in dealing with text found in natural imagery.

1.5 Related Work

The common method of text reading is to combine the task of character detection with optical
character recognition. In the following a selection of prominent work is presented that has been

10



conducted in the fields of text reading, text detection and geometric matching under bounded
error. Here, we will classify a system as a text reading system only if it contains an integrated
character recognition module. Although several authors refer to their systems as text reading
systems, many of them pass a binarized version of the detected text to a commercial OCR system.
As this possibility is available to all text extraction systems, we make a distinction between such
systems, and those who use their own end-to-end detection and recognition engine.

An overview over general optical character recognition techniques would be beyond the scope of
this work. Readers who are interested in an overview of OCR classification and feature extraction
techniques are referred to [32] and [33].

1.5.1 Text Reading in Natural Images

Not much research has been conducted in text reading. Most systems focus on text detection only,
and pass the detected text image to a general-purpose OCR engine. In fact, although two ICDAR
text reading challenges were held, one in 2003, and another in 2005, none of these received a single
entry [27, 26]. In the following we will give a brief overview of the prominent candidates in the
text reading domain.

The earliest work in text reading was performed by Ohya et al. [31]. The text reading process is
performed in 4 stages: First, the image is binarized based on adaptive thresholding. Then, character
candidate regions are detected by observing gray-level differences between adjacent regions. A
character recognition process selects patterns with high similarities by calculating the similarities
between character pattern candidates and a set of standard patterns in a dictionary. Finally, a
relaxational operation is applied to update the similarities. While the approach appears to work
well for signs, the binarization step is inappropriate where text can show high levels of noise and
variations in illumination. Based on experiments on a set of 100 images, the recall rate of text
detection was 85.4% and the character recognition rate 66.5%.

Zhang et al. present a system for sign reading and translation [45, 46]. The system is capable
of detecting, recognizing and translating chinese signs to English. To detect sign text, a 3-step
algorithm is used: The first layer detects possible sign regions by employing a multi-resolution
edge detection algorithm. The second layer performs an adaptive search in the neighborhood of
the initial candidate regions. The search incorporates layout constraints to restrict the set of
possible text regions. The third layer is a more elaborate layout analysis, which the authors claim
is essential for the detection of the relatively complex Chinese character structures. Finally, the
authors present a character recognition engine in [47] for recognition of text embedded in natural
scenes. Instead of passing binary images to an external reconition engine, the presented system
extracts features for OCR from the image directly. The character image is preprocessed with
an intensity normalization method to deal with lighting. Then, the Gabor wavelet transform is
employed to obtain local features over a 7× 7 grid, and linear discriminant analysis (LDA) is used
to reduce their dimensionality. The resulting features are classified to character classes using the
k-nearest neighbor method.

Additionally, we are aware of two commercial text reading system. The SceneReader system is
capable of detecting and recognizing alphabetic text in a broad variety of photographic images,
including highly complex images such as street scenes, according to the software’s website2. A
visualization of the engine’s performance on the ICDAR 2003/2005 datasets can be downloaded
from the website. Finally, the software package Shoot & Translate by Linguatec is a text recognition
and translation engine for mobile devices3. The software is client - server based: After the user

2http://www.scenereader.com/
3http://www.linguatec.net/products/mtr/shoot/trans
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has taken a photo with the mobile device, the image is uploaded to a recognition and translation
server, which sends the translated text back to the mobile device. At this time, the website gives
no detailed information on accuracy.

1.5.2 Text Detection in Natural Images

Prior work on text detection systems can be roughly divided into those that are based on connected
components, and those that make use of textural features. Some of the earliest work in text detec-
tion was performed by Lee and Kankanhalli [21], using a connected-component method. An edge
detection algorithm is first used to determine gray-level values of pixels on character boundaries.
Then gray-level thresholding is performed for connected component generation of objects with the
same gray levels. A series of heuristics are used to filter out non-text components, which are based
on aspect ratio, contrast histogram, and run length measurement. Though the authors claim the
method could be applied to other domains, results are presented only for cargo container images.

Zhong et al. [48] apply a connected component based method using color reduction. The image
color space is quantized using peaks in the RGB color histogram. This assumes that text clusters
together in this color space, and that they occupy a significant portion of image. The components
are then filtered using heuristics, such as area, diameter, and spatial alignment. The authors
evaluate their system on a number of images of CD and book covers.

Similarly, Shirai et al. [37] use color-based clustering for component extraction. For this, the image
is divided into several blocks, based on detected edges. Each block is clustered in color space to
form blobs. An SVM classifier is used to classify the texture of blobs to text or non-text. While
the authors state they have tested their system on the ICDAR2003 data set, no results are given.

Jain and Yu [16] apply a connected component based method, which includes color bit dropping
(24 to 6-bit) the image, followed by color clustering. The generated color regions are decomposed
in multiple foreground images. The connected components are extracted from each of the images
and classified. The localized text components are then merged into a single output image. The
system is capable of handling non-skewed horizontal and vertical text only.

The text detection method presented by Messelodi and Modena [29] consists of 3 steps: First,
elementary objects are extracted from the image, obtained after intensity normalization, bina-
rization and connected component generation. In a second step, these are filtered based on area,
relative size, aspect ratio, density and contrast. Finally, text lines are extracted based on character
closeness, alignment, and comparable height.

Myers et al. present a system capable of dealing with 3-dimensional text in natural scenery [30].
The text detection and location process detects vertically oriented edge transitions and connected
components of similar intensity in grayscale. From these components, horizontal and vertical
bounding lines are estimated. The resulting rectangles are then normalized to frontal view, that is
any perspective distortion is removed. However, the sequence of text in the image is assumed to
be of similar intensity, and the in-plane rotation roughly zero.

Hasan and Karam [14] present a text detection system using morphological operators. After the
intensity of the image has been computed, edges are identified using a morphological gradient
operator. These are thresholded to obtain a binary image. Spatially close edges are grouped by
dilation, while small components are removed by erosion. The components are then filtered based
on size, thickness, aspect ratio, and gray-level homogeneity. While performance is discussed, the
authors compare their results to other systems on three images only.

While the presented text detection systems so far have based their decisions on connected compo-
nent and edge features, other text detection systems classify regions into text and non-text using
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textural features. Wu et al. [43, 44] present a system called “TextFinder”, which begins by seg-
menting the image using a multi-scale texture segmentation scheme based on nine second-order
Gaussian derivatives. A non-linear transformation is applied to each filtered image to obtain a
feature vector for each pixel. These feature vectors are then classified to segment the textures
into different classes. The authors refer to this process as texture segmentation. Next, the chip
generation stage is initiated that operates on the segmented regions and applies a set of appro-
priate constraints to find text strings within these regions. Chip generation consists of 5 phases:
The stroke generation phase, in which the input image is convolved by a second order Gaussian
derivative in the horizontal direction to find strong vertical edges. These edges are thresholded and
grouped to connected components called strokes. Then, stroke filtering is used to eliminate false
positives, followed by stroke aggregation, which generates the chips, i.e. the text strings. Finally,
chip filtering and chip extension are employed to filter out false positives and find false negatives.

Jung et al. [17] also make use of texture in their system. First, textural properties of the RGB color
bands are extracted. Then, a neural network is employed to train a set of texture discrimination
masks for text and non-text classes. The inputs of the classifier are the color values of the neigh-
borhood of a given pixel value. Chen et al. [8] use a number of weak classifiers upon which they
base their decisions. To determine which image features are reliable indicators of text, statistical
analysis of manually labeled text regions in city images is performed. Weak classifiers are obtained
by using joint probabilities for feature responses on and off text. These weak classifiers are then
used as input to an AdaBoost machine learning algorithm to train a strong classifier [41]. An
adaptive binarization and extension algorithm is applied to those regions selected by the cascade
classifier. The overall algorithm has a success rate of over 90% (evaluated by complete detection
and reading of the text by commercial OCR software) on their test set.

Interested readers may find more information on some of the presented systems in the survey
conducted by Jung et al. [18], and the one by Liang et al. [24].

1.5.3 Text Detection and Reading in Videos

While text detection and recognition in videos poses many of the same challenges as in images,
there are a number of differences. Particularly, many text detection systems for videos assume
that text is a caption overlayed on the video stream. Some general assumptions for caption text
are that all characters are of a single color, that they show a strong contrast to the background,
and that they are not distorted by rotation or perspective. Furthermore, it is assumed that the
background is in motion while the text is not. All of these assumptions cannot be applied to text
in natural scenery, and hence we will not provide an in-depth examination of work related to this
area. However, some approaches are presented here that may also be of interest for text detection
in images.

For instance, the video text detection system presented by Smith and Kanade [39] closely resembles
the techniques used in some of the systems above. Text regions are detected by applying a 3 × 3
horizontal differential filter over the input image, followed by thresholding to obtain vertical edges.
A smoothing step filters out small edges. Then, adjacent edges are connected, and a bounding box
computed. A set of heuristics, such as aspect ratio, fill factor, and size are used to filter out false
positives.

Shim et al. [36] make use of the gray-value intensity homogeneity of text regions. Pixels with
similar gray levels are merged into groups. After removing large regions as backgroud, text regions
are sharpened by a region boundary analysis. Finally, candidate regions are filtered using heutistics.
While the assumption of a homogenous gray level for characters may not hold for general text in
natural scenery, it is often the case for text found on signs.
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Chun et al. [9] use a combination of Fourier features and a neural network classifier to detect
text regions. A related approach is taken by Li et al. [23], but does not incorporate any explicit
feature extraction stage. Instead, a neural network combines the outputs of the three color bands
into a single decision about the presence of text. Boxes are then generated based on the neural
net output. Whether or not such a classifier can be extended directly to text in natural scenery
remains questionable.

Finally, Sato and Kanade [35] present a complete text reading system for videos. A simple OCR
system is employed that classifies characters by grayscale correlation. The proposed OCR engine
is used in combination with the text detection method by Smith and Kanade [39].
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2 System Overview

When designing a text reading framework, it was crucial that it was flexible, simple and could
incorporate a variety of text detection and recognition techniques. Overall, the main requirements
for such a framework are:

Flexibility: Various text detection and reading techniques should be carried out in the system
framework. A fixed module pipeline should not be assumed, as normally found in OCR
systems. Rather, a flexible combination of recognition techniques should be allowed.

Simplicity: The framework should be kept small and simple. The focus should not lie on the
evaluation of a system framework, but on the recognition techniques used in conjunction
with it. The purpose of the framework should be to bind these techniques together.

Traceability: In performance measurement, it is crucial that error can be assigned to a specific
module, rather than evolve out of an unknown combination of processes. It should be possible
to “open” the pipeline at any stage and perform a component based evaluation.

Completeness: The system should be able to fulfill both the tasks of text detection and text
reading, from start to finish. Text detection may or may not be a building block to the entire
text reading process.

In the following we will give an overview of the text recognition framework used in this work. We
will begin by giving a high-level overview over the entire system, followed by the descriptions of
each recognition phase.

As shown in Figure 4, the text recognition system consists of two main steps. The first deals
with generating character hypotheses, while the second groups the set of generated character
candidates to words. Note that an explicit binarization or connected component extraction step
may be involved, but is not necessarily, as in most traditional OCR systems. The reasons for this
are two-fold. On the one hand, this general approach satisfies our requirement of flexibility, i.e.
we do not want to incorporate fixed modules into the processing pipeline. Secondly, although an
image preprocessing step is performed, we would like to refrain of any fixed image simplification
tasks before-hand, as each of these simplifications involves a loss of information, and usually opens
up the possibility of error (as in the binarization case). Rather, image preprocessing is done on a
“pull”-basis, only performed if a certain module requires it. Once an image is preprocessed, features
are extracted and used for generating character location candidates. These may specify merely the
presence of characters, or the characters themselves. Finally, the grouping model groups character
candidates to words.

2.1 Character Hypothesis Generation

Character candidates are generated in a number of steps. First, the image is preprocessed in
preparation for the feature extraction step. The choice of feature extraction method determines
the preprocessing operations required. For instance, some feature extraction methods work on the
edges of the input image, while others work on the thinned components. Thus, preprocessing is
done ad-hoc, whenever feature extraction requires it. The extracted features are used as evidence
for generating character candidates. The framework allows to generate candidates with varying
degrees of specificity. For instance, some features may merely indicate the presence of a character
at a certain position, while others may indicate the actual character glyph. The first problem shall
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Figure 4: Steps in the text recognition system.

be referred to as character detection, and deals with generating a set of character bounding boxes
B = {b1, ..., bn}, where a box bi is specified by the 4-tuple:

bi = (xi, yi, wi, hi)

and xi, yi specify the center coordinates (in pixels) of the character within the image, and wi, hi
specify the width and height (in pixels) of the i’th character.

The second task deals with the actual character classification. It enriches the bounding box param-
eters with a glyph specification g. This task is called character recognition in the following. The
output of this step is a set of character hypotheses C = {c1, ..., cm}, each containing the character
glyph gi and its bounding box bi:

ci = (bi, gi).

Figure 4 (top) also shows the two general approaches used in this work to obtain character hy-
potheses. The pipeline on the left consists of separate character detection and recognition steps.
Here, image features are used to generate a set of bounding boxes, which are then passed on to
the character recognition module. The recognition module then generates character hypotheses
from the image portions specified by the bounding boxes. In short, this approach is a divide-and-
conquer method, where we divide the problem of recognizing characters in random imagery to
the sub-problems of segmenting a random image into character regions, and recognizing a single
character at a known position and scale within this region. This approach is taken by the majority
of text reading systems. While this division of a problem into subproblems simplifies the entire
challenge, it does come with a few caveats. Most notably, as with all operation sequences, each
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component in the sequence may introduce error. That is, errors made in the detection phase will
propagate through to the recognition phase. These errors include missed character locations, false
positives, or incorrect bounding boxes generated by linked or split characters in the image.

Thus, we introduce the approach of joint character detection and recognition, shown in Figure
4 (top) by the pipeline on the right. As the name suggests, this approach does not distinguish
between a character detection and recognition phase. Instead, image features are used to generate
character hypotheses directly. While this approach is more complex and usually computationally
more expensive, the fact that it does not include a separate segmentation step eliminates problems,
such as linked and split characters.

Furthermore, the character recognition step can be divided into the following two techniques:

• Feature classification: The image portion is represented in a (more compact) set of features.
These features should show little variance within the same character class, and a high variance
for differing character classes. The features are then classified to character hypotheses, given
some classification model, such as a decision tree or nearest neighbor model.

• Image prototype matching: A number of labeled character prototypes are fitted to the bound-
ing box. The label of the best matching one, given some matching measure, is selected as
the character class.

While both techniques can be used when the character detection and recognition steps are sep-
arated, the joint approach is based on prototype matching alone. The reason for this is that it
is difficult to extract compact features from an entire image that would give rise to all character
locations. This would require a classifier capable of reconstructing the original character locations
based on the set of features only.

In this work, character hypothesis generation methods using both a separate and joint detection
and recognition are discussed, to address questions such as how the number of processing steps
(each introducing error) affects the overall result and how computationally expensive each approach
is. A number of character detection and classification techniques are discussed and evaluated, some
common to the OCR domain, some from related pattern recognition domains. The performance
of these techniques is detailed in the performance evaluation in Section 5.

2.2 Filtering

The hypothesis generation techniques discussed so far have always enriched given hypotheses with
new data: the character detection phase enriches the simple hypothesis of characters being within
the image (an assumption we always make) to the actual positions of the characters within the
image. The character recognition phase enriches given bounding box hypotheses with character
classes. Filtering, on the other hand, generates a subset of hypotheses H ′ from a set of given
hypotheses H, so that H ′ ⊂ H. Filtering hypotheses is important as initially the aim is to rather
produce too many hypotheses, than too few (or in information retrieval terms: A high recall is
prioritized over a high precision). The reasoning behind this is that it is generally easier to filter out
false hypotheses than to subsequently generate the missed ones. To filter out characters, analysis
methods are required to determine whether or not a certain hypothesis is likely to be correct or
not. This is usually done by employing heuristics. Filtering is discussed in more detail in Section
3.6.
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2.3 Grouping

Once the character hypotheses have been determined, they are grouped to words in the grouping
step. In this step, two tasks are performed. Firstly, character candidates are assigned to groups,
based on a number of constraints. Secondly, character locations are rejected that do not fit into
any group. Furthermore, the grouping module must be able to cope with the following challenges:

• Deal with clutter: False character locations may be distributed among the true character
hypotheses. The grouping module must be able to distinguish clutter from true characters.

• Deal with multiple overlapping character boxes: There may be multiple character hypotheses
for the same glyph in the image. In these cases, the grouping module must make a decision
on which characters to accept and which ones to reject.

The grouping of characters to words allows the evaluation of recognition performance on real-world
data. In this case, performance is tested on text found in photographic images. This also allows
a comparison of the performance of techniques used in this work, to those of existing systems.
While much more elaborate grouping methods exist, this work will not go beyond a comparatively
simple method here to keep the focus on character classification methods. Furthermore, higher
level grouping techniques are not included, such as grouping to sentences or layouts as this would
be beyond the scope of this work.

Finally, it should be noted that the output of the grouping module can be seen as evidence for
new character hypotheses. For instance, if a group is found containing the word ’amburger’, a
new location could be generated to the left of the word in hopes of finding the missing ’h’. While
providing interesting possibilities, grouping will be used as a final step here only.
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separate approach joint approach

preprocessing

character detection

character 
recognition by 

feature 
classification

character 
recognition by 

prototype matching

edge detection (Sobel, LoG, Canny)

distance transform

skeletonization

closed contours

stroke detection

orientation histograms

Fourier descriptors

skeleton features

template matching

RAST

Table 1: Overview of the techniques used in preprocessing, character detection and character
recognition. The joint approach requires no detection step and uses prototype matching techniques.

3 Character Hypothesis Generation

In this section an overview of the character hypothesis generation is given. Specifically, the types
of features used in this work are detailed, how they are extracted from the input image, and how
they can be used to generate character hypotheses. Table 1 gives an overview of the individual
techniques that are used in this work for the preprocessing, character detection and character
recognition steps. The table also shows that the joint approach of recognition requires no character
detection step and uses prototype matching for character recognition. This section is structured
according to the table: The first section deals with the processing steps involved in the separate
and joint approaches. Next, the individual image operations and feature extraction techniques
are discussed, starting with preprocessing, followed by an examination of the features used for
character detection. Finally, the character recognition methods by feature classification and by
prototype matching are discussed.

3.1 Approaches

Before the character detection and recognition techniques are discussed, an outline of their use in
the separate and joint approaches is given here. These two approaches can be seen as the high-level
framework, into which the individual preprocessing, feature extraction, classification and matching
methods can be inserted.

3.1.1 Separate Detection and Recognition

In the separate detection and recognition approach a character detection step is performed before
recognition resulting in a set of bounding boxes B. It is assumed that each of these boxes contains
exactly one character. Then, there are two ways to classify the character within the box: recogni-
tion by feature classification and recognition by prototype matching. The classification approach
segments a character region into distinct components and extracts features from the component
that represents the character. That is, given a set of components Cb in a bounding box b ∈ B, find
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Figure 5: Steps involved in the seperate approach using character recognition by feature classifi-
cation. Here, a contour based classifier is shown.

the component c ∈ Cb, that describes the character. In this work, components are either contours
or skeletons, and the character component is the outer contour or skeleton that belongs to the char-
acter glyph. There are many possibilities of extracting the character component from a bounding
box, such as filtering the components using character heuristics. Here, for each bounding box the
largest component that fits into it is taken, so that each box results in at most one component.
This approach also shows the necessity of a character detection step, as passing the entire image
to the recognition engine would result in a single character being processed only. Thus, separate
detection and recognition can be broken down into the following steps:

• Run text detection to find the set of character bounding boxes B.

• For each box b ∈ B:

– Find the largest component c in b

– Extract features from c

– Classify features

– Return character class

Figure 5 illustrates this approach for the case of feature classification based on contours. Note that
there are many ways to classify the extracted features to a character class. A discussion of the
classifiers used in this work is given in Section 3.5.4.

Besides feature classification, prototype matching techniques (discussed in Section 3.6) can be
used as a recognition method on bounding boxes as well. In Figure 5, a prototype matcher would
replace the character contour identification, the feature extraction and the feature classification
steps. Instead, multiple character prototypes would be matched to the image components within
the detected bounding box, and the character label of the best match chosen. With the additional
bounding box information, such techniques can be optimized by making the following assumptions:

• There is only one character to match within the bounding box.

• The character is roughly at the center of the box.

• The character’s width and height are roughly identical to the box’s dimensions.
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While these assumptions may greatly simplify the prototype matching methods used in this work,
they do not necessarily hold when dealing with distorted or rotaeted characters. Section 5 deals
with these issues in more detail in the performance evaluation of prototype matching on bounding
boxes.

3.1.2 Joint Detection and Recognition

While the approach of recognition by feature classification provides a simplification to the text
reading task by dividing it into two sub-tasks, it does come with a few drawbacks. Firstly, even
if a highly accurate recognition method is used, it will fail if the correct bounding boxes were
not found in the detection step. Furthermore, the segmentation of the features into character
components is not robust against linked or broken characters.

Prototype matching, on the other hand, works more closely on the image data, and requires no
segmentation at all. Rather, the image is seen as a 2-dimensional signal of fixed length, in which
a smaller template signal must be matched. In order to use prototype matching for character
detection and recognition, a set of character prototypes is employed, and each is matched to the
image. In each such run, the prototype may match multiple locations, producing high matching
scores at each such location. A threshold may be used to limit the number of matching locations.
The bounding boxes and prototype labels of the matches that exceed this threshold are then
returned as the set of character hypotheses.

Since prototype matching requires no segmentation, the matching algortihms presented here are
robust against linked or broken characters. Even occluded characters can still be matched if enough
image information is available to provide a good match with a template. Without bounding box
information however, prototype matchers must conduct an extensive search for characters with
various fonts, scale and possibly rotation and distortion. Searching over all possible combinations
is not computationally feasible. For this reason, naive solutions like template matching will only
be of limited use in the joint recognition approach. The RAST geometric matching algorithm
discussed in Section 3.5.2 on the other hand, promises to find character candidates throughout the
image in a reasonable amount of time.

3.2 Preprocessing

During preprocessing, the query image is prepared for character hypothesis generation. The goal
of this step is to make those image features apparent that are specific to the feature extractors
or matching algorithms. For instance, the edges found during edge detection provide the input to
contour based hypothesis generation. In the following, a number of preprocessing operators are
presented. As many of the subsequent operations are based on edges, the edge detection methods
are discussed first.

3.2.1 Sobel Operator

The Sobel operator [40] is an isotropic discrete two-dimensional differentiation operator typically
used for edge detection. It computes an approximation of the gradient of the image intensity
function. The output of the operator is a gradient map, where each pixel is either the corresponding
gradient magnitude or its direction.

The operator uses two 3×3 kernels, one for the horizontal direction and one for the vertical, which
are convolved with the original image to calculate the approximation of the derivation. For a given
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Figure 6: Sample image (left) with Sobel edge detector magnitude (middle) and direction (right)
output.

input image I, the horizontal and vertical gradients Gx, and Gy are calculated as follows:
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Then the gradients can be combined to obtain the magnitude

G =
√
G2
x +G2

y,

and the gradient’s direction by

φ = arctan
(
Gy
Gx

)
.

In this work, both the Sobel magnitude and gradient are used in the character recognition process.
However, as the Sobel operator does not output thin edges, i.e. edges that are only 1 pixel
thick, other edge detction methods are used when thin edges are required. Figure 6 shows an
example image and the corresponding gradient direction and magnitude maps obtained by the
Sobel operator on a gray-level version of the input image.

3.2.2 Laplacian of Gaussian

The Laplacian operator ∆ is an isotropic operator which approximates the second spatial derivative
of an image. Coupled with a zero-crossing detector, the Laplacian can be used for edge detection,
as the zero points mark the local maxima of the first derivative (points of rapid intensity change).
In order to reduce its sensitivity to noise, the image is often first smoothed using a Gaussian
operator, given by

Gσ(x, y) =
1√

2πσ2
exp

[
−x

2 + y2

2σ2

]
.

This results in the Laplacian of Gaussian (LoG) operator, given by

LoG ∗ I = ∆ [Gσ(x, y) ∗ I(x, y)]
= [∆Gσ(x, y)] ∗ I(x, y).

Note that use of the associativity of the convolution operator is made, which allows for the following
optimization: Instead of convolving the image twice, the Gaussian is applied to the Laplacian mask,
and the obtained Laplacian of Gaussian mask is applied to the image. For instance, the LoG can
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be approximated by the following 5× 5 kernel:

LoG =
1
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1 2 −16 2 1
0 1 2 1 0
0 0 1 0 0



∗ I

To find the edge points, a zero-crossing detector marks those pixels where the sign of the Laplacian
changes, with the strength of the crossing. Here we define the strength as the minimum absolute
value of the two values involved in the sign change. Finally, this map is thresholded to obtain
a binary image. Figure 7 shows the filter applied to a test image with various settings for the
Gaussian standard deviation σ and the crossing threshold t.

There are 2 notable advantages of the LoG operator in comparison to other edge detectors. Firstly,
it produces thin edges (i.e. edges of 1 pixel thickness), as only the crossings through zero are
marked. Secondly, it produces closed contours, or contours that are bounded by the image border,
that is, it segments the image into blobs. On the downside, the LoG operator is very sensitive to
noise for low values of σ. Furthermore, as Figure 7 shows, if the threshold t is set too high, the
second property does not hold. Thus, t introduces a trade-off between cleaner segmentation and
the amount of noise.

original σ = 1.0, t = 0 σ = 5.0, t = 0 σ = 5.0, t = 0.1

Figure 7: Sample image (left) and Laplacian of Gaussian results for various settings of σ and t.

3.2.3 Canny Edge Detection

The Canny edge detector [6] also produces thin contours, but obtains these in a different manner.
The steps are outlined in the following:

1. Noise reduction: The image is convolved with a Gaussian mask to reduce noise.

2. Intensity gradient extraction: Edges in the image are classified by their direction angle G.
Many edge detectors, such as the Sobel operator (discussed above), return the strength of the
horizontal and vertical edge, from which G can be computed. Usually, the direction angle is
rounded to one of four angles, representing horizontal, vertical, and the two diagonals.

3. Non-maximum suppression: Given the rounded edge gradients, a search is performed to
determine if the gradient magnitude is a local maximum orthogonal to the gradient direction.
This is done by comparing the pixel in question with its neighbors that do not lie in the
direction of the gradient. For instance, if a pixel lies on a horizontal edge, the edge intensities
directly above and below the pixel in question are considered. If these intensities are lower
than the pixel’s intensity, it is marked as an edge.
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4. Tracing: The edges are traced using thresholding with hysteresis, i.e. two thresholds (Thigh
and Tlow) are required for tracing. A trace is initiated only if the intensity is greater or equal
to Thigh. The edge is then traced as long as the intensity does not drop below Tlow. This
allows tracing even faint edges, as long as there is a strong starting point to begin with.

The Canny edge detector was designed to be optimal in the following ways:

Good Detection: The algorithm should be capable of finding as many real edges in the image
as possible.

Good Localization: The edges marked should be as close to the original edges as possible.

Minimal Response: The edges should be thin, i.e. each edge should be marked only once.

Typical parameters for the Canny edge detector are the Gaussian smoothing factor σ, and the
hysteresis thresholds thigh and tlow. In the implementation used here, rather than setting these to
constant values, we employ an image adaptive approach: Let PE denote the distribution of edge
magnitudes. Furthermore, let qN equal the N -quantile of PE for some selected N . Then, given
two factors ahi and alo, both greater than or equal to 1.0, we calculate the thresholds by

thi = ahi · qN ,
tlo = alo · qN

In other words, the selection of N gives the amount of noise we expect in the image. The thresholds
are then set to some multiple of the quantile, ignoring all edges in the noise range. Figure 8 shows
an example image and the corresponding Canny edge maps for various parameter values.

original σ = 1.0, N = 0.1 σ = 3.0, N = 0.1 σ = 3.0, N = 0.6

Figure 8: Sample image (left) and the Canny edge detection output for various values of σ and N .
The hysterisis factors were set to alo = 2.0 and ahi = 4.0.

3.2.4 Distance Transform

Applying the distance transform [2] on a binary image yields a map that supplies each pixel with
the distance to the nearest boundary pixel. More formally, given a set of n boundary pixels
B ∈ {(x, y)}n, the distance transform computes a map D for the distance metric m, where

Du,v = min
(x,y)∈B

‖(x, y)− (u, v)‖m

A transform is qualified by the distance metric it uses. Common candidates are the Euclidean
(m = 2), Manhattan (m = 1), chessboard (m = ∞), or Chamfer metrics. Figure 9 shows the
distance transformation performed on a binary image using various distance metrics. In the original
image, the black pixels represent the non-boundary pixels.
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In this work, the algorithm described in [28] was implemented, which allows the computation of
the Euclidean, Manhattan and chessboard distance transform in two passes. The acquired distance
maps can then be used for measuring the width of components, which is used for stroke analysis
discussed in Section 3.3.2.

original Manhattan chessboard Euclidean

Figure 9: Sample binary image (left) and the corresponding distance transform using the Manhat-
tan, chessboard, and Euclidean distance metrics.

3.2.5 Connected Components

Generally, it is preferred to avoid any type of segmentation in the preprocessing phase. However,
the connected component step described here is not meant for segmenting characers from clutter,
but used to identify the set of all connected regions in the input image. Later, these components
are used for skeleton extraction as described in the next section.

The extraction of the connected components from a color or gray-scale image can be described as
follows: In a first step, edge detection is applied to the input image. The resulting edge map is
thresholded to obtain a set of boundary pixels. The goal is to group all those pixels that are not
completely separated by a boundary. This is done by labeling the image, i.e. every pixel is assigned
an ID that is unique to the component it belongs to. The labeling algorithm requires two passes
over the image. The first pass labels each pixel with the label of its non-boundary neighbors. If a
pixel does not have a non-boundary neighbor, that has been labeled already, it is assigned a new
label. If a pixel has neighbors of conflicting labels, these are stored as equivalent. In the second
pass, each pixel is relabeled to the lowest equivalent label. Figure 10 shows an input image, the
binarized edges, and a visualization of the assigned label IDs.

original edges connected components

Figure 10: An example input image (left), the binarized edges (middle), and the extracted labels
(right), visualized here by assigning a random color to each connected component.

3.2.6 Skeletonization and Thinning

A topological skeleton of a shape is a thin version of that shape, where every point is equidistant
to at least two boundary points. The skeleton should largely preserve the extent and connectivity
of the original region. There are a number of methods to obtain the skeleton from a binary
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Figure 11: The distance map of the object on the left extruded into 3D-space (right). The ridge
points are the singularities of the distance function, marked in red.

image. The first is to use morphological thinning, which successively erodes away pixels from the
boundary. Obviously, for a binary image and its distance map D, this process will require max[D]
passes over the image. For large characters often found within high-resolution photographs, this
leads to a computationally expensive operation. An alternative approach is to first calculate
the distance transform of the input image. The skeleton then lies along the singularities of the
distance transform. Figure 11 shows a distance transform projected into 3-dimensional space. The
singularities are highlighted in red.

The skeletonization algorithm must be carefully selected, as apart from efficiency many algorithms
lead to very different results. Small changes or noise in the shape form usually lead to vastly
different skeletons. This problem is amplified by the discrete property of the contours we deal with.
Thus, it is desirable to obtain skeletons that are robust to small changes, even if the skeletons are
not complete. Some algorithms, such as the morphological ones, are able to produce fairly clean
thinned versions of the original shape, that are robust against noise. Other algorithms require a
seperate pruning step, in which unwanted skeletal branches are removed. Often, as in our case,
branches reaching out to the boundary are unnecessary and can be removed. Figure 12 shows a
sample character, and its associated raw and “cleaned” skeletons.

In this work, both a morphological, and a distance-map based skeletonization algorithm were im-
plemented. The morphological algorithm uses standard thinning masks, such as the ones described
in [12]. For the distance-map based approach, a number of algorithms exist to efficiently find the
singularities in a distance map. Here, a modified version of the algorithm found in [7] is used.

Additionally, an extensive pruning step is performed to greatly simplify the skeleton form. For this,
we make use of an important property of text: Glyphs are often a composition of strokes, that is,
they are composed of shapes that have roughly parallel contour lines (such as the character shown
in Figure 12 (left)). Thus, a point is considered as a skeletal point only if the normals connecting
it to the shape outline are roughly pointed in opposite directions. This will for instance ignore
all those spurious branches reaching out to shape corners, such as those marked red in Figure 12
(middle). To find the direction of the normal for a skeletal pixel (x, y), the distance map is used
again. Use can be made of the property that the distance values on the normal drop the fastest in
the direction of the contour. That is, for a set of angles Ri, the normal angle ϕi ∈ Ri at (x, y) is
approximated by

ϕi = argminϕ∈Ri
[D(x− α cosϕ, y − α sinϕ)].

The angles ϕ1 and ϕ2 of both normals are obtained by including all angle candidates in R1, but
only those roughly opposite to ϕ1 in R2. The point (x, y) is then marked as a skeleton point only
if the difference of angles δ(ϕ1, ϕ2) lies within 180◦ − ε < δ < 180◦ + ε, for some tolerance value ε.

Together with other image features, such as color or the distance map, skeletons can be enriched
with additional information. For instance, mapping the points of a skeleton to the distance map,
yields the stroke thickness of the skeleton at those points.
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original raw skeleton pruned skeleton

Figure 12: A sample character (left), the corresponding raw skeleton (middle), and the pruned
version (right).

3.3 Character Detection

In the following the task of character detection is examined. Given the image descriptors obtained
in the preprocessing step, the goal is to find features that will act as evidence for determining the
bounding boxes of characters.

3.3.1 Closed Contours

As characters are expeceted to contrast highly with their backgrounds (in order to be readable), it
may be assumed that their edges form closed contours that fully separate the character pixels from
the background pixels. Thus, all chains of edges which form a closed contour may be considered
evidence for a character at the location of this contour. An edge-chain with two end-points is
considered closed, if the distance of the two endpoints does not exceed a certain threshold dc. If
an edge chain has more than two end-points, it is split into smaller chains, until each chain has
exactly 2 end-points. Setting tc to anything greater than 0 allows identifying even those contours
with a spurious opening in them.

However, as we are often confronted with broken contours that have multiple small openings in the
trace, we apply a contour joining preprocessing step: All end-points that are sufficiently close to
one another are connected, and joined to a single contour. The threshold of the joining distance
must be selected carefully: If selected too low, small amounts of noise may become connected to
form a large contour. On the other hand, if selected too high, large or high resolution character
contours may be left unconnected. For this reason, the threshold is chosen adaptively to the contour
length. Specifically, two contour end-points p1 of contour C1, and p2 of another (or possibly the
same) contour C2 are joined iff

‖p1 − p2‖ ≤ d ·max [|C1| , |C2|] ,

where |Ci| is the length of contour Ci, and d is some real-valued weight, usually in the range [0, 1].
The contour joining algorithm performs a joining step, in which all end-points are analyzed and
joined if they satisfy the joining constraint. As this may result in new larger contours, the process
is repeated until no more joins have been performed. While the complexity of each iteration has a
worst case of O(n2) for n contours, a scan-line implementation, in which the points are processed
from top to bottom, performs much faster in most of the cases.

3.3.2 Strokes

The stroke map S of the input image is a binary map, in which each value S(x, y) indicates whether
(x, y) is lies on the central axis of a stroke. These have been extracted by either tracing ridges along
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original all strokes width variance color variance

Figure 13: The stroke width and color variance for an example image (left). The brightness of
each stroke indicates its variance, where black is a low variance and white a high variance.

the distance transform, or thinning the connected components of the input image. Note that the
former can be treated as evidence for character locations already, as the ridges extracted through
tracing have been pruned to include only those points that lie within parallel contour boundaries.
As this is a typical feature of text, areas containing these strokes are also more likely to contain
text.

However, combining the binary stroke maps with other maps obtained in the preprocessing step
can further help distinguish between regions of text and those of background. An analysis of a large
number of text strings in natural scenery suggested that the stroke width of text found in typical
photography normally does not vary much within the character glyph. The use of stroke width to
segment text from background has also been used in [25]. Here, use is made of this observation by
extracting the stroke width variance of a skeleton, which describes how much the width within a
shape varies. Another common property of text found in photography is that color often remains
largely unchanged within each character. Again, the variation of color can be used as an indicator
for text likelihood.

More formally, if a skeleton Ψ is given by a set of points Ψ = {(x1, y1), ..., (xn, yn)}, the stroke
property variance VarM of some property M is given by

VarM [S] =
1
n

n∑

i=1

(M(xi, yi)− µM [S])2 ,

where the stroke mean µM is given by

µM [S] =
1
n

n∑

i=1

M(xi, yi).

Then the stroke width variance is given by VarM , where D is the map obtained from the distance
trasform. Similarly, the stroke color variance for a color image I is given by VarI . Figure 13 shows
two sets of skeletons obtained from an input photograph with their stroke width and color variance
visualized. A brighter shade of gray indicates higher variance.

3.4 Character Recognition by Feature Classification

The previous section dealt with finding character candidate bounding boxes only. Now, the task of
recognizing characters found within candidate regions to text is addressed. This section deals with
recognition methods, which classify characters based on the features extracted from the character
contour or skeleton. This is called the feature classification approach. In the following feature
extraction methods are introduced based on contour orientation, fourier descriptors, and skeletal
features. The final part of this section deals with the classification of the extracted features.
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original k = 1
20 l k = 1

10 l k = 1
3 l

Figure 14: Original shape (left), and the contour normals (right) shown in red for various values
of the smoothing parameter k, and ε = 1.0. The total contour length is given by l.

3.4.1 Orientation Histograms

The closed contour of a character is a piecewise linear curve that separates the character from
the background. While the parametrization of the contour itself may be used as a feature vector,
without normalization this would not yield any robustness against translation, scale, rotation, or
starting point. Much research has been conducted on how to capture contour information in a
simple, usually one-dimensional and discrete function. For instance, by taking all the left-most
and all right-most contour points from top to bottom, two 1-dimensional functions are obtained,
called profiles [38]. While this approach simplifies a set of 2D feature values to 1D, it does not
provide rotation invariance (translation and scale invariance are simple to obtain). In another
approach, the contour is represented as a list of chain codes, where each such code gives the offset
to the next pixel. That is, in an n-connected neighborhood, there are n distinct codes. While
these codes can be made somewhat robust against rotation and starting point, this invariance only
holds for a finite number (namely n) degrees of rotation, and only if the contour is robust against
any of these transformations [12]. Kimura and Shridhar [19] obtain starting-point invariance by
taking the distribution of chain code values over the contour. Here, this approach is extended
to histograms of orientations. Specifically, instead of representing the contour as a set of discrete
connected points, a continuous representation is used, in which the contour is given by the following
two dimensional function

z(p) = (x(p), y(p))T ,

which yields the contour point at the path length p ∈ R when traversing the contour clockwise.
Then, the orientation at p is given by

α(p) = arctan
(
y(p+ ε)− y(p)
x(p+ ε)− x(p)

)
,

for some small real-valued ε. A smoother set of angles can be obtained by calculating a range of
angles [α(p−kε), ..., α(p), ...α(p+kε)], for some discrete value k. Figure 14 shows the orientations (as
normals) sampled at a discrete number of points for various settings of k. Note, how a higher value
of k tends to produce a smoother set of angles, so that an angle close to a corner is influenced by the
change in direction. The orientations can be made invariant to the starting point by considering
the frequencies of orientations only. The normalized frequencies of such an orientation histogram
can then be used as features for classification.

Finally, this approach also allows the normalization of the frequencies for invariance against ro-
tation. To do this, the principal axes [12] of the shape specified by the contour are calculated.
This is done in the following manner: Consider the set of points that fall within the shape interior.
Assuming these samples following a normal distribution, the mean vector and covariance of this
distribution is calculated. According to the principal axis theorem, the eigenvectors are then the
principal axes of the ellipse induced by the covariance. As these axes are fairly robust against ro-
tation (modulo 180◦), the angle of the first principle axis is subtracted from all orientation angles
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Table 2: Two rotated shapes along with their principle axes (red), and their normalized orientation
histograms.

to obtain the normalized angles. Figure 2 shows several example shapes along with their principle
axes, and the extracted normalized orientation histograms.

3.4.2 Fourier Descriptors

Given a closed contour that represents the boundary of some shape within the image, the contour
curve can be described in a parametric and continuous form. For a given starting point (x0, y0),
the parametric curve is given by the two functions x(p) and y(p), that map a real-valued p to the
coordinates (x(p),y(p)) on the contour that are at length p with respect to the starting point. We
can combine these two continuous curves into one, by viewing the coordinates as complex values.
We then obtain the complex function

ẑ(p) = x(p) + iy(p),

which satisfies the constraint
ẑ(p+ nL) = z(p) n ∈ Z,

where L is the total length of the contour, i.e. the function ẑ is periodic. We are essentially
treating the x-axis as the real axis, and the y-axis as the imaginary axis. While the interpretation
of the sequence is recast, the nature of the boundary remains unchanged. A periodic function can
be expanded in a Fourier series. If we sample the boundary at n equidistant points with distance
d, we may apply the discrete Fourier transform (DFT) of z(k) = ẑ(kd) to obtain the complex
coefficients

a(u) =
1
n

n∑

k=0

z(k)e−j2πuk/n.

These coefficients are called the Fourier descriptors of the boundary. The original contour can be
reconstructed by applying the inverse Fourier transform, given by

z(k) =
n−1∑

u=0

a(u)ej2πuk/n.

Suppose that instead of considering all descriptors, only the first m coefficients are used, i.e. we
set the coefficients a(u) = 0, ∀u > m. Then the result is an approximation of the original contour,
omitting the higher frequency components of the shape descriptors. Note that the number of
points in the boundary remains unchanged. Rather, the number of terms used in reconstructing
it has been reduced. Figure 28 shows an example boundary transformed into frequency space and
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original m = 3 m = 5 m = 7 m = 9 m = 13 m = 256

Figure 15: Contour sampled by 256 points (left), transformed to Fourier space, and back to the
spatial domain using the first m descriptors only.

reconstructed again using different values for m. The image shows that even a small value for m
already gives a good approximation of the original shape. This suggests that the firstm descriptors
are good feature candidates that capture the essential shape information of the contour, and that
they can be used to distinguish between shapes. Without any further preprocessing however, the
Fourier descriptors are sensitive to translation, scale, rotation and the starting point. We will now
discuss ways of modifying the descriptors to obtain invariance against these transformations.

The first descriptor z0 expands to

z0 =
1
n

n∑

k=0

x(k) +
i

n

n∑

k=0

y(k),

and gives the mean coordinate, or centroid of the boundary. Thus, to obtain translation invariance,
z0 can be simply set to 0, which moves the centroid of the boundary to (0, 0). The second coefficient
describes a circle

z1 = r1exp(iα1).

If the contour is scaled by a coefficient s, all Fourier descriptors are also scaled by s. If the
contour is traced counter-clockwise, the first coefficient is always unequal to zero [15]. Therefore,
all descriptors can be divided by the magnitude of the second Fourier descriptor to obtain a scale
invariant vector

z(k) =
z(k)
|z(1)| .

There are various approaches of obtaining rotation and starting point invariance. The simplest of
these methods is to ignore the phase, and take the magnitude of the descriptors only. However,
this would result in a loss of a substantial amount of information. To visualize the importance of
the phase, Figure 16 shows shape reconstructions performed with a randomly modified phase. The
image shows that the contour bears little similarity to the original one. Nevertheless, the question
remains of just how important phase information is for character classification. To give an answer
to this question, the classification performance of the descriptor magnitudes only will be compared
to a more sophisticated approach discussed next.

The second, more complex approach achieves rotation and starting point invariance while keeping
the phase information intact. If a contour is rotated counter-clockwise by the angle α, the Fourier
descriptor zk is multiplied by the phase factor exp(ikα), according to the shift theorem for the

Figure 16: Contour (left) transformed to Fourier space and back (right), while randomly modifying
the phase.
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Fourier transform. The rotation can be normalized, by subtracting the phase shift kα from all of
the Fourier descriptors:

z(k) = z(k)e−jα1k.

To achieve starting point invariance, a specific starting point is chosen in the spatial domain that
is invariant to translation, scale, and (with a 180◦ ambiguity) rotation of the contour. To do this,
we first calculate the principal axes of the shape specified by the contour. The starting point is
then selected as the top-left most contour point that intersects the first principal axis. Figure 17
shows a number of shapes transformed to frequency space and back again, using the normalization
procedures described here.

original

normalized

Figure 17: A number of contours (top) transformed to Fourier space, normalized with respect to
translation, scale, and rotation, and transformed back into the spatial domain (bottom).

3.4.3 Skeleton Classification

So far, ways to classify characters have been discussed based on features obtained from character
contours. In the following the focus is shifted to character classification of features taken from the
skeleton. Some of the methods mentioned above, such as orientation histograms, can be applied
to skeletons, requiring only slight modifications in the implementation. Fourier descriptors, on the
other hand, require a defined order of points. As skeletons may contain branches, a more complex
ordering of points would need to be found.

The advantage of using skeletons instead of contours is their invariance to character stroke thick-
ness. That is, a bold character will have roughly the same representation as a thin one. The down-
side is that character representations become so simplified that we must expect a large amount of
false positives in noisy areas of the background. On the other hand, this simplified representation
of character can be used for character classification. Skeletons can be viewed as graphs, where each
node is either an end-point, a junction or a change of direction. In this respect, skeletons capture
the structure of the original character shape, and are very similar to how a human would describe
a character (For instance, a “T” could be described as: two strokes, one horizontal and one vertical,
connected by a T-junction). This leads to a set of discrete features that can be extracted from the
skeleton graph [20, 34]:

• The total number of end-points.

• The total number of T-junctions.

• The total number of X-junctions.

• The total number of loops.

• The total number of horizontal and vertical lines.

• The total number of curves.
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Total number of end-points 2 2 0
Number of end-points in zones 1,1,1,1 0,2,1,1 0,0,0,0

Number T-junctions 0 2 0
Number of X-junctions 0 0 0

Number of loops 0 1 1

Figure 18: Examples of character skeletons and their discrete feature values. The first principle
axis is shown in red and the second in green.

These topological features are extracted from the graph and used for classification. Note that
instead of counting curves and straight lines, which in itself is a complex task to do in a robust
manner, a 4-bin orientation histogram is used, representing the amount of skeleton strokes in the
horizontal and vertical directions. Additionally, the skeleton is divided into four zones, and the
end-points are counted for each of these zones. Most of the features listed are robust against
translation, scale and rotation. In fact, using only these features, there is no way of distinguishing
an ’M’ from a ’W’, or a ’u’ from an ’n’. For this reason, it is desirable to have a certain amount of
sensitivity to rotation. To obtain invariance against rotation modulo 180◦, the principle axes are
used (see orientation histograms). Using both of these axes, the image is divided into four zones:
Two zones divided by the first principle axis, and two zones divided by the second. Furthermore,
the orientation of the first principle axis is used to normalize the angles in the orientation histogram.
Figure 18 shows a collection of example characters, along with the zone subdivision and the discrete
feature values.

3.4.4 Classification

Once the features have been extracted from the character component, these are classified using
various well-known classification methods. A brief overview and explanation of these are given in
the following:

• k-Nearest Neighbors: The k-nearest neighbor classifier (short: k-NN) compares a given feature
vector with all feature vectors of a set of labeled training samples in a database. The k
nearest neighbors are selected, and the most frequent label among them chosen. If there is a
tie between two or more labels, k is decreased by 1, and the evaluation is performed again.
This process will always yield a result when k reaches 1. In this work, two measures were
used for the evaluation of the distance between two feature vectors F and G:

– Euclidean distance, given by ‖F −G‖ =
√∑

i(Fi −Gi)2.
– Jensen-Shannon Divergence (JSD) [11], used for histogram features. The JSD is based

on the Kullback-Leibler divergence (KLD), given by

DKL(F,G) =
∑

i

Fi log
Fi
Gi
.

The KLD measures the expected difference in the information length required to code
samples from F when using a code based on F , and when using a code based on G. The
JSD extends the KLD to a smoothed, symmetric measure, given by

DJS(F,G) =
1
2
DKL(F, F +G) +

1
2
DKL(G,F +G).
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• Bayesian: Bayesian classifiers are probabilistic classifiers based on Bayes’ theorem, given by
P (C|x1, ..., xn) = P (C)p(x1,...,xn|C)

p(x1,...,xn) , where x1 to xn are n feature values, and C is the character
class. The classifier chooses the class C for which the posterior probability P (C|x1, ..., xn)
becomes maximal. Here, we use the naive Bayes classifier, which assumes independence
among the feature values, so that we can rewrite the above to P (C|x1, ..., xn) = P (C) ·∏n
i=1 p(xi|C). The p(xi|C) can easily be estimated from the training set. Note that the

denominator is removed as it is independent of the class variable. The naive Bayes classifier
works remarkably well [10], despite its (often incorrect) assumption of independent features.

• Decision Trees: A decision tree classifier employs a tree model in which each node of the
tree leads to a decision based on a certain feature value. The tree is traversed from the root,
until a leaf node, representing some output class, is reached. Here, the popular C4.5 tree
is used, which sorts the decisions by information gain, and the classification and regression
tree (CART), which incorporates a decision tree inducer for discrete classes similar to C4.5,
combined with locally weighted linear regression for continuous values [42].

While the feature classifiers based on orientation histograms and Fourier descriptors use a k-NN
classifier, the skeleton classification method is evaluated using all three classifiers, as it includes a
mix of discrete and real-valued features.

3.5 Character Recognition by Prototype Matching

The methods described in this section classify characters by attempting to match labeled prototype
(or model-) characters to the image. This approach is called prototype matching. Here, two
variants of matching are discussed: The commonly known template matching, and the lesser
known, but very promising RAST matching from the domain of geometric matching, which shows
high robustness with respect to distortion and clutter.

3.5.1 Template Matching

Template matching is a technique for finding a subregion of an image that matches a given template
image. That is for an image I and a template T , the goal is to find the best matching position
x∗, y∗, where

x∗, y∗ = argmaxx,y[MT (I, x, y)],

and MT (I, x, y) is a matching measure for the visual similarity between T and the identically sized
image region of I at x, y. Using model character images as templates, this technique could be used
to find characters within an image. However, on further inspection it becomes apparent that the
large variation of size, font and rotation of characters within photographic images would yield a
search space far too large to be of any use in simple template matching. Thus, it is assumed that
the location and size of characters are known before-hand. Furthermore, the rotation of characters
is ignored here.

Assuming that size and position of the characters are known, the task that remains is that of
determining the best character at that position. This is done by first resizing and repositioning
every character template to the target location. As templates may be resized to very large and
disproportionate dimensions, the template characters are stored in a vector format. Once the
templates have been fitted to the target location, a matching score is calculated. Based on these
scores, the best prototype is determined using k-nearest neighbor classification, and its class label
is selected as the output character class.
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In this work two approaches for the definition of the matching score MT are tested. The first
operates on the image edges and calculates the correlation of the template edges of T with those
of I at the target location. Thus, the algorithm does not operate on I directly, but rather on its
edges, given by a binary map I ′, where the edge pixels receive a value of 1, and all other pixels 0.
Such a map can be obtained using the Canny or LoG (with zero crossings) edge detectors. Suppose
the template edges are also given as a 2-dimensional binary map TE , which similarly returns 1 for
edge pixels, and 0 for the remaining pixels. Then, the correlation of an M ×N sized template edge
map TE in I at (x, y) is given by

TE(x, y) ◦ I(x, y) =
1

MN

M−1∑

m=0

N−1∑

n=0

TE(m,n) · I ′(x+m, y + n).

If E is the set of edge pixels in T , i.e. E = {(x, y)|TE(x, y) = 1}, the term above may be simplified
to

TE(x, y) ◦ I(x, y) =
1
|E|

∑

(m,n)∈E

I ′(x+m, y + n),

Although this method does in fact return a high correlation when template and image edges fall
directly onto one another, even slight shifts in the position or scale of the template lead to a rapid
decline in the correlation, quickly reaching zero. In order to be more robust against these slight
transformations, the correlation is not calculated on I ′ directly, but on the distance transform of
I ′. Then, if a contour point does not fall onto an image edge directly, the score will be “penalized”
by the distance to the nearest edge. As good matches then lead to low correlation values, the score
is obtained by

M1
T = exp(−TE(x, y) ◦DI′(x, y)),

where DI′ is the distance transform of I ′.

In the second approach to calculating a matching score, color information in I is used directly,
by calculating the color variance of the matching pixels with T . Instead of operating on template
edges, consider the set of pixels that fall within the template contour. Assuming these fill-pixels
are given by an M ×N binary map TF (x, y)→ {0, 1}, the set of target pixel locations at (x, y) is
defined as

τ(x, y) = {(x+m, y +m)|TF (m,n) = 1}
Then, the match variance σ2

T at (x, y) is given by

σ2
T (x, y; I) = Var {I(m,n)|(m,n) ∈ τ(x, y)} .

Finally, σ2
T , is normalized by dividing by the total color variance σ2 of all pixels within the target

region. Thus the matching score M2
T is obtained by

M2
T = exp

(
−σ

2
T

σ2

)
.

Figure 19 shows the matching of two templates on a test image, and the matching scores at
each point (using the edge energy method). The visualization gives an idea of how precisely the
prototype and the image character must line up to obtain a high score.

3.5.2 RAST Matching

Another common matching technique is that of optimal bounded error matching, which has been
used in both 2D and 3D object recognition tasks extensively [13]. These recognition tasks address
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Figure 19: Two templates (top) matched to the test image (left). The matching scores are visualized
for each point, where a brighter shade indicates a better match. Here, the edge-energy matching
method was used.

the following problem: Assume a set of image points G, and a set of model points M are given.
The goal is to find the viewing transformation (if one exists), that maps each model point to within
a distance ε of an image point. That is, for all transformations Tθ over the space of parameter
vectors θ, the goal is to find a value θ0 so that Tθ0 is the “best” mapping of the model points in M
onto the points in G under the given error bounds. More formally, this matching problem can be
seen as the task of maximizing a match quality function, given by

Q(θ; M,G) =
∑

x∈M
max
y∈G

[qθ(x, y)] ,

and qθ(x, y) is a match measure for the transformation of point x onto y, using the parameters θ.
In this work, this measure is defined as

qθ(x, y) =

{
0, if ‖Tθ(x)− y‖ > ε

1, otherwise

In the 2-dimensional case a transformation is given by a translation t, a scale s, and a rotation r.
Furthermore, the set of points is extended to a set of edgels, i.e. instead of using 2D points described
by x and y coordinates alone, a third value α is given which adds the notion of orientation. Note
that this additional value reduces the number of possible matches under given error bounds, as the
match measure qθ considers the distance of the point coordinates and their orientations. Figure
20 illustrates the recognition problem for the 2D case using edgels.

Model Edgels M Image Edgels G

Tθ0

Figure 20: Illustration of 2D geometric matching of model edgels to image edgels. The orientation
of the edgels are shown in green.

Many algorithms to solving this problem have exponential time complexity [13], or although fast,
may miss good solutions (such as the generalized Hough algorithm [1]). The RAST algorithm [3]
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on the other hand uses no heuristics, loses no solutions, and although it has exponential complexity
in the worst case, it is usually much faster (for a more detailed look at RAST’s complexity, readers
are referred to [3, 4]). RAST employs a branch-and-bound search over parameter space, that is the
algorithm begins with a box in parameter space, that includes all transformations to consider. It
then finds all correspondences between image and model features and evaluates the quality bounds
of the matches resultung from the set of correspondences. If the upper bound on the best possible
match is smaller than the minimum quality required for a match, or if it is smaller than another
solution found already, the search is aborted. Otherwise, the current box is subdivided into smaller
regions and the same process is recursively repeated. To evaluate which region to search next, all
transformation candidates are maintained in a priority queue, sorted by the upper bound. The
search terminates when either the quality bounds are within the required tolerance (match), or a
pre-defined maximum number of iterations is exceeded (no match).

RAST has been successfully used for recognition of hand-printed digits before [5], making it a
promising candidate for use in text recognition. In the previous section, we have seen that while
template matching provides a fairly simple way of matching model glyphs to image locations, it is
highly unsuitable when transformation space grows. RAST on the other hand, allows a search for
matches over a large transformation space, including translation, scale and rotation of the model
points.

To prepare the image and model for the search, we must transform each of them to a set of
edgels. That is, to narrow down search space, each image point is associated with an orientation.
More specifically, for the input image, we will simply use a subsampling of points along the image
contours, obtained by edge detection. The associated orientations are evaluated from the gradient
of the image, i.e. each point is associated with a normal vector pointing into or out of the enclosed
component. Similarly, the contours of the model glyph, which are represented in a vector format,
are subsampled into a set of contour points. The normals are computed and associated to the
points. We are then ready to use RAST to find the optimal match between a set of model edgels
and set of image edgels. Note that, while the normals of the model contours can be configured
to always point to a certain direction (such as “into” the glyph), this possibility is not given in
the image, where the normals point into or out of a character depending on its color (and the
background color). Thus, RAST is configured to compare normal orientations disregarding the
direction. The following parameters are used to configure the matching search:

• Transformation ranges (t0, t1), (s0, s1), (α0, α1): Specify the search space of the matching
process, spanned by the range of translation, scale and rotation. Obviously, these parameters
have a large influence on the types of characters that can be matched, and on the overall
performance of the algorithm.

• Match tolerance εt: This value specifies the maximum distance allowed between an image
edgel and an edgel in the model to be considered a match. Here, a distance is used that is
proportional to the matching scale. That is, if a prototype is matched to the image at half
scale, εt will also decrease by one half.

• Angle tolerance εα: Specifies the maximum angle difference allowed between an image point
and a point in the model to be considered a match. Angles may be compared with or without
respect to orientation.

• Max Iterations: The maximum number of splits in search space before giving up on a solution.

• Tolerance: A threshold that determines the minimum size of a search space subdivision before
it is accepted or rejected as a solution.
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For each glyph model, RAST is run on the input image, using a certain set of transformations.
This may either be the set of transformations confined to a hypothesis location, or the set of all
possible transformations over the entire image. The transformation space is specified by the lower
and upper bounds on translation, scale, and rotation. Each match is assigned a quality of match,
where a combination of the match ratios p and r is chosen:

p =
# matched edgels in model
# total edgels in model

, r =
# matched edgels in image
# total edgels in image

.

The ratios are combined to a single score and using k-nearest neighbor classification, the label of
the most frequent prototype is chosen. There are two methods of combining the ratios to a single
score. The first is evaluated by simply taking the minimum of the two. Such a score degrades
gracefully as more of the instance of a model in an image becomes occluded, or as spurious points
are added to the image. However, while such a score may work well when operating on a single
character bounding box, it is not suitable for detecting characters over an entire image. There
are two reasons for this. Firstly, when matching over an entire image r will generally be a very
small number and not in the range of p, thus making a combination of the two difficult. Secondly,
without a fixed character bounding box small characters will generally obtain a lower r-value than
large characters. For this reason a second match measure is used when performing RAST matching
over an entire image. Given a set of character matching ratios {(p1, r1), ..., (pn, rn)} the each ri is
normalized to ri, by

ri =
ri∑n
j=1 rj

The same normalization procedure can be applied to the values of pi. Then, the match score of a
character i is given by

si =

{
ri+pi

2 , if pi > t

0 , otherwise

where t is some threshold for the minimum model match ratio p. The normalization makes the
combination of the ratios possible, while the threshold eliminates those candidates that do not
match well. However, this does not eliminate the problem of higher r-values for large characters.
Thus, when operating on the entire image multiple matching passes are run. After each pass
the points of matching characters are removed from the image. The number of passes is then the
number of expected text strings of varying sizes. Tests conducted on typical scene data have shown
that a value of 2 is usually sufficient.

3.6 Character Hypothesis Filtering

Generally, the methods for character hypothesis generation described above are configured to
produce too many character candidates rather than too few. In other words, they output a large
number of false positives. For this reason, it is important to filter those candidates that are not
true characters. At the same time it is important to avoid filtering out any true positives as they
cannot be recovered in a later step. Chracter filtering is performed after all character hypotheses
have been generated, and before they are grouped. The filtering techniques are most often based
on a set of character heuristics. In this work, the following filtering techniques are used:

• Minimum area: A character must exceed a minimum size to be considered for grouping.
Imposing a minimum area restriction removes small spurious boxes usually found in noise.
Often a value is chosen which reflects the minimum size of a character required to produce
reasonable recognition rates.
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• Maximum area: On the other hand, occasionally large areas of the image are incorrectly
classified as a character. For instance, the outline of a sign may be incorrectly interpreted
as a ’D’ or an ’O’. Thus, a maximum area filter removes those hypotheses that exceed some
fraction of the total image area.

• Apect Ratio: Characters of the latin alphabet usually have bounding boxes that fall within
a fixed aspect ratio range. Hence, hyptheses with bounding boxes outside of a tolerated
aspect ratio range can be filtered out. This value must be chosen carefully when dealing with
rotated characters, as the typical aspect ratio of characters does not hold in this case. For
instance, an ’l’ rotated 90◦ has an unusually large width relative to the character height.

• Minimum Score: This filtering technique can be employed if character recognition was per-
formed. If a recognition score falls below a certain threshold, the character is considered
noise and filtered out.
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Figure 21: Overview of the grouping process, that converts character hypotheses to a set of words
and bounding boxes.

4 Grouping

After the character hypotheses have been generated and filtered they are passed to the grouping
module where they are converted to a set of words. The grouping module must determine which
characters belong to the same group and reject character hypotheses that do not fit into any group.
A number of steps are involved in the grouping process and Figure 21 gives an outline of these. In
the following each step is discussed.

Character Merging The merge step converts a set of character hypotheses H to a set of groups
G. At the beginning of the merge step, each character belongs to a distinct, single element group.
To evaluate whether two characters are compatible for merging, a set of constraints C = {c1, ..., cn}
are employed, where each constraint ci maps a pair of character hypotheses to a compatibility value:

ci : H ×H → {0, 1}, i ∈ [1, n]

All character hypotheses are considered pair-wise and merged to the same group, if they are
compatible according to all constraints. For instance, in the extreme case, all characters are
merged to the same group, while the other extreme is given when all characters remain in separate
single-element groups. A number of constraints are used in this work, and a rough outline of each
one is given below:

• Maximum distance: This constraint is satisfied, if the characters are no more than a certain
distance apart. The distance is proportional to the character size.

40



A B

A B A
B A

B

A B

A B A
B A

B

A B

A B A
B A

B

A B

A B A
B A

B

max distance max height ratio min y-overlap max slope

Figure 22: A set of example images showing grouping constraint violations, along with the name
of the constraint each example violates.

• Maximum height ratio: Two characters are considerd compatible under this constraint, if the
height of the taller character divided by the height of the shorter character is less than a
certain threshold.

• Minimum y-overlap: If the height of the bounding box intersection of two characters is no
smaller than a certain threshold, the characters are considered compatible.

• Maximum slope: A pair of characters is considered compatibile, if the absolute value of the
slope of the line connecting the two characters is no larger than a certain threshold.

Figure 22 shows examples of character pairs that each violate one or more of the constraints. Note
that by adding more constraints the set of recognizable character strings is reduced. For instance,
if the slope constraint is used, text that is rotated or heavily distorted may not be grouped at all.

Group Filtering While the filters discussed in the previous section operated on character hy-
pothesis, the filtering discussed here operates on character groups. In this work only a simple
filtering mechanism is used, which filters groups containing less than a certain amount of charac-
ters. Usually, this value is set to 2, so that all single-character groups are removed.

Group Processing In the next step, the groups are processed and prepared for word extraction.
In this work the following group operations are used:

• Hole removal : Using a number of heuristics, character hypotheses are removed from the
group, that appear to be holes of larger characters.

• Space detection: Although the distance constraint may already separate text lines into words,
the space width of word groups often varies, so that text with a small space width may be
grouped together. These spaces can be detected by comparing the individual spaces with the
mean space width.

• Character sorting : The characters within a group have no particular order. This operator
sorts the characters in preparation for the word extraction step. While more complex sorting
methods may be used, a simple sorting by x-position is sufficient for this work.

Word Extraction In the final step, words and bounding boxes are extracted from the groups.
The bounding box is easily evaluated, and is simply the smallest box that encloses all of the
character boxes. In order to extract a word from a group, the character hypotheses are processed
in their sorted order, and for multiple conflicting hypotheses, a character decision is made, i.e.
one of the hypotheses is accepted as the true character hypothesis. Multiple characters are in
conflict with one another, if the overlap of the bounding boxes exceed some threshold. There
are two methods of resolving character conflicts: The first simply selects the hypothesis with the
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maximum recognition score. The second does a search over a (sub-)set of all possible character
combinations, and chooses the word that best matches a dictonary entry. Here, the Levenshtein
distance [22] is used to compare the word hypothesis with the dictionary entries. The value of
the distance measure gives the number of insertions, deletions or substitutions required to convert
one string to the other. Such a distance measure between strings is called an edit-distance. Each
word hypothesis is compared to every word in the dictionary, and the word with the minimum
edit-distance is then chosen as the output string. In case of a tie, the word that arose from the
hypothesis with the highest recognition score is chosen.
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5 Experiments and Results

5.1 Tests on Synthetic Data

In order to compare the performance of character detection and recognition techniques, a chal-
lenging set of 6,000 synthetic color character images were rendered. Although real-world images
are usually preferrable to synthetic images, the latter allows for controlled, specifically tuned test
scenarios. Specifically for this case, a test set of images was required, where each image contains
exactly one character glyph. This allows performance measurement of the character detection and
recognition techniques only, without having to deal with multi-character issues such as linked let-
ters, or incorrect grouping of characters. (Section 5.2 deals with the recognition of entire words in
real-world data). Apart from the single character constraint however, it was important to obtain a
test set that was as realistic as possible. More specifically, the test set should simulate the following
real-world phenomena:

• A character may appear in any color or size, and may be rotated or distorted by perspective.

• Characters are present in a large number of fonts, ranging from simple standard fonts to
heavily stylized ones.

• Text may lie on complex backgrounds, and may be difficult to segment from the background.

• Often text does, in fact, lie on a single colored surface, which may be affected by lighting.

To generate images with these properties, a rendering engine was implemented that was capable
of rendering distorted characters onto complex backgrounds. The engine was configurable to allow
fine-tuning of the distortion parameters. The rendering pipeline can be summarized as follows:

1. Generate a background image of a random size. (The size range is configurable by the tester).
The background is randomly selected to be one of the following:

(a) A single random color c with illumination simulation. Specifically, the illumination was
simulated by a color gradient to a lighter or darker version of c. Figure 3 (top left image)
shows an example image with such a background.

(b) A random background image that does not contain text. Here, a hand-selected set of
100 images (downloaded from Flickr) were used, along with image patches from the
ICDAR training set. The patches were obtained by analyzing ICDAR annotations, and
selecting those regions of the image that did not contain text.

2. Select a random character (from a given list of characters) for rendering at a random location
in the image.

3. Distort the selected character by scale, rotation or perspective, depending on the test con-
figuration.

4. Choose a suitable color for the character. As we would like the character to be somewhat
distinguishable from the background (which is normally the case in realistic images), the
color histogram of the background area in which the character will be rendered is extracted.
The color with the minimum frequency is selected. If there is more than one such minimum,
a random one is chosen.

5. Render the character.
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Figure 23: Examples of challenging synthetic test images.

A total of 6 sets of character images were rendered, each containing 1,000 images. The images in
each of the 6 sets were generated using a different set of rendering configurations, in order to test
robustness against various distortions. All images range in size from 128× 128 up to 1024× 1024,
not preserving this aspect ratio. An overview of the six configurations is given in Table 3, where
s specifies the range of scale, r the range of rotation in 2D, and rx, ry, rz the ranges of rotation in
3D. All unspecified ranges are implicitly set to zero. Note that the translation ranges are over the
the image bounds for all test sets, and therefore omitted. Additionally, the table gives an overview
of the abbreviations used for each set in the following discussion, and two example images from
each set. Note that although the simulation of occluded characters or those that are linked to the
background was not specifically implemented, these issues arise naturally from colorful backgrounds
where the character color conflicts with at least some of the background colors. Figure 23 shows
some of the difficult cases produced by our rendering engine. As the dataset should act as a “stress-
test” of the discussed detection and recognition techniques, such a subset of challenging images is
desirable.

5.1.1 Character Detection

The first test suite evaluates the performance of character detection using the bounding-box gen-
eration methods presented in this work (Section 3.3). Before the experiment setup and results can
be discussed, a performance measure, that is adequate for the comparison, must be determined.
The goal of this test is to investigate which detection methods are most likely to generate the
bounding box of the true character present in each synthetic test image. For this, a match measure
mp between two bounding boxes b1and b2 is defined by

mp(b1, b2) =
b1 ∩ b2
b1 ∪ b2

,

where b1 ∩ b2 is the intersection rectangle of b1 and b2, and b1 ∪ b2 is the smallest box that encloses
b1 and b2. This value has the value one for identical rectangles, and zero for rectangles that have
no intersection. Normally, this measure is used in text detection to estimate a real-valued quality
of match for the returned boxes of the detection system. For the synthetic case however, which
contain single characters only, the match measure is simplified to a binary measure called a hit (or
its inverse function, miss), given by

hθ(b1, b2) =

{
1, if mp(b1, b2) ≥ θ,
0, otherwise

for some minimum quality threshold θ. In the following a value of θ = 3
4 was used. For each

test sample, a true bounding box bt is given, and a set of evaluated boxes E are returned by the
detection system. Then, the precision P and recall R is given by
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Name Fonts Transformations Example Images

S 1
Size only:

s ∈ [24, ..., 400]

SR 1

Size and 2D rotation:

s ∈ [24, ..., 400]
r ∈

[
−π

2 ,+π
2

]

SP 1

Size and 3D rotation:

s ∈ [24, ..., 400]
rx, ry, rz ∈

[
−π

4 ,+π
4

]

FS 50
Font and size:

s ∈ [24, ..., 400]

FSR 50

Font, size and 2D 

rotation:

s ∈ [24, ..., 400]

r ∈
[
−π

2 ,+π
2

]

FSP 50

Font, size and 3D 

rotation:

s ∈ [24, ..., 400]

rx, ry, rz ∈
[
−π

4 ,+π
4

]

Table 3: Overview of the six synthetic image sets used for evaluation.
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P =

∑
be∈E hθ(be, bt)
|E| ,

R =

{
1, if ∃be ∈ E : hθ(be, bt) = 1,
0, otherwise

These measures are then averaged over all test samples.

Closed Contours We begin by using closed contours to generate bounding box hypotheses.
Here, a contour is considered closed if its endpoints are within a distance of no more than 1 pixel
(in an 8-connected neighborhood). An analysis is performed to evaluate which edge detection
method leads to the best bounding box generation results. Table 4 shows the precision and recall
for the closed-contour generator on a subset of the synthetic data for the Canny edge detector
and the Laplacian of Gaussian detector. Experiments were carried out using various settings for
the Gaussian smoothing factor σ. Using the Canny detector, the recall drops with increasing σ,
while the precision increases. This result is expected, as the more the image is smoothed, the fewer
false positives we obtain. At the same time, a high smoothing factor may also break contours of
true positives (as shown in the sample images in the same table). The LoG detector shows an
overall poor precision. This is not surprising however, as the LoG detector always produces closed
contours, making it an inadequate candidate for character detection by closed contours. The initial
low recall of the LoG edges can be explained by the high amount of noise in the edge map, that
often link character edges to background edges.

σ = 1.0 2.0 3.0 4.0 6.0
Canny 3% / 77% 18% / 77% 30% / 72% 36% / 69% 34% 65%

LoG 0% / 30% 2% / 69% 3% / 71% 7% / 72% 7% / 70%

Table 4: Performance (average precision/recall) of closed-contour detection on Canny and LoG
edge maps, using various values for the Gaussian smoothing factor σ. The edge output for a
sample image (left) is displayed for each σ.

Although a higher Gaussian value may result in a better trade-off between precision and recall, we
are more interested in high recall than precision. The justification for this, is that a missed contour
is generally more difficult to generate, than to filter false positives. In the following experiments σ
is set to 2.0.

In addition to the Gaussian parameter σ, the Canny edge detector uses two thresholds thi and tlo
for tracing with hysteresis, given by

thi = ahi · qN ,
tlo = alo · qN,
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Figure 24: Average precision and recall of closed-contour detection on Canny edge maps with
contour joining preprocessing step (σ = 2.0). The left graph shows the results for various values
for the expected noise N . The right graph shows the results for various settings of the joining
distance threshold d.

where qN is the quantile of edge magnitudes, that is considered noise. Here, we choose alo = 2.0
and ahi = 4.0. To evaluate a good choice for N , multiple experiments for an increasing value of N
were conducted on a subset of the synthetic test data. The results are shown in Figure 24 (left).
The graph suggests that a value of N = 0.8 provides a reasonable trade-off between precision and
recall. Although this may seem like a surprisingly high value, and indeed many of the contours
are broken, due to the fact that we employ a joining step (set to d = 1/5 in the graph), and are
generally not interested in preserving the contour shape, but merely finding its position, this value
suits the task well.

As the results just demonstrated, a higher smoothing factor and noise quantile is beneficial for
precision, but may produce gaps in shape contours. Usually, these gaps are no more than a few
pixels wide, whereas contours produced from background noise are often short, and have endpoints
that are far from each other. Thus, it makes sense to apply a contour joining preprocessing step,
where end-points that are sufficiently close to one another are connected. Furthermore, this joining
threshold should be adaptive to the contour length, so that a long contour has a higher probability
of merging with another contour than a short one. To find the optimal setting for the maximum
joining factor d, a series of experiments were carried out with decreasing values for d (and N set
to 0.8). The results are plotted in Figure 24 (right), and show that a value of around d = 1/5
produces a high recall with a relatively small drop in precision.

Using Canny edge maps with σ = 2.0, N = 0.8 and a contour joining step with d = 1
5 , we still

achieve a rather poor precision of around 50%, but on the other hand, a recall of around 72% (i.e.
72% of the bounding boxes are found by the detector). As no filtering step has been done in these
tests, this high amount of false positives is not surprising. Though the recall shows that most
character boxes are indeed found, we shall provide a quick analysis of where even a high setting
for d does not lead to correct boxes. Figure 25 shows such a case, where the character is linked to
the background, so that potential end-points of the character contour have become corner points
connected to a background edge.

A summary of the performance of the closed contour detector on all test images is listed in Table 6.
Note that the detector is fairly robust against any of the transformations applied to the characters.

47



original contours

Figure 25: A case where closed contour detection does not lead to the correct character hypothesis,
due to a links of the character contour to background contours.

Character Strokes Character bounding boxes can be detected by analyzing the properties of
the skeletons obtained from the input image. Here, we discuss and evaluate two properties that are
typical for character skeletons: Variation in stroke width and variation in color. We expect both
of these to be low for character skeletons. Furthermore, two methods for extracting skeletons were
implemented: The first obtains skeleton maps by morphological thinning, the other traces along
ridge points obtained from the distance transform. In the thinning approach, the LoG operator
was first applied to the image to obtain closed contours. Then, the set of connected components
were extracted, and each one thinned (in parallel). In the ridge tracing approach, the distance
transform was applied to the edge map (again obtained by the LoG operator), the ridges traced,
and each connected skeleton subsequently pruned. As skeleton extraction tends to produce a large
number of small skeletons in noisy areas, skeletons are ignored that have a length of no more than
8 pixels. These would otherwise be promoted to bounding box candidates, as very short skeletons
tend to have a low variance in their properties.

Table 5 shows a comparison of the precision and recall obtained from skeleton analysis using the
thinning and ridge-tracing algorithms. The tests were conducted using the stroke width variance
(left in table), and the stroke color variance (right in table) as indicators for character locations. A
skeleton was classified as a character skeleton, if the stroke width variance was below tSWV = 0.5,
or if the stroke color variance was below tSCV = 64 respectively (the color ranges from 0, ..., 255
for each channel) . As the results show, both methods perform about equally well in terms of
recall. However, the ridge tracing technique produces significantly more false positives. This is
somewhat suprising as the ridge tracing method produces fewer skeletons in noisy areas (recall that
the skeletons are pruned after ridge tracing). However, the thinning method tends to produce so
many skeletons in noisy areas that these are all interconnected, and are immediately discarded as
potential character locations. Figure x shows a comparison of two images and the skeletonization
output of both methods. However, it should be noted, that the ridge tracing method is much more

original skeletons (ridge tracing) skeletons (thinning)

Figure 26: Comparison of skeletons obtained by ridge tracing (middle) and morphological thinning
(right).
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Stroke Width Variance Stroke Color Variance
Thinning 32% / 60% 27% / 48%

Ridge Tracing 3% / 59% 3% / 48%

Table 5: Precision and recall of the stroke width variance detector, using two skeletonization
approaches: thinning and ridge tracing.

S SR SP FS FSR FSP
CC (no joining) 31% / 64% 30% / 65% 30% / 64% 30% / 65% 28% / 63% 28% / 63%

CC (d = 1
5 ) 48% / 75% 47% / 74% 48% / 73% 51% / 77% 47% / 74% 46% / 73%

SWV 33% / 69% 30% / 68% 24% / 58% 33% / 54% 26% / 52% 20% / 44%
SCV 23% / 66% 24% / 68% 25% / 66% 36% / 65% 25% / 61% 26% / 57%

Table 6: Summary of performance results (precision / recall) of character detection, without
bounding box filtering.

efficient than the thinning method, which usually requires numerous passes over the image.

The threshold chosen for the stroke width (or color) variance provides a trade-off between precision
and recall. Obviously, a higher threshold leads to a higher recall, but lower precision. Figure 27
shows the precision and recall for various values of tSWV and tSCV , evaluated on a subet of the test
data. Values of 0.3 for tSWV and 128 for tSCV seem to provide a reasonable trade-off. Using these
thresholds, both methods were tested on the full synthetic test data. The results are summarized
in Table 6. While the detectors are robust against rotation, the error rate for the detector based on
stroke width variance increases for characters distorted by perspective, and varied by font. The first
can be explained by the fact that the stroke width varies more and more with growing perspective
distortion, while the second can be explained by stylized fonts that use strokes of different widths.
The detector based on stroke color is not affected by this problem (though it may be in real-world
data, where lighting conditions could alter the color appearance).
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Figure 27: Performance plot of the stroke width/color variance detectors for varying threshold
values.

Filtering False Positives As Table 6 shows, closed contours and character stroke detectors are
capable of achieving reasonable recall rates. The precision, however, has been comparatively poor
for both methods. One way to improve precision is to filter out any bounding boxes with properties

49



S SR SP FS FSR FSP
CC 56% / 75% 54% / 74% 53% / 73% 57% / 77% 54% / 74% 53% / 73%
SWV 43% / 69% 43% / 68% 37% / 58% 40% / 54% 34% / 52% 26% / 44%
SCV 36% / 66% 34% / 68% 40% / 66% 45% / 65% 34% / 61% 35% / 57%

Table 7: Filtered localization results (precision / recall)

that suggest they are not actual character bounding boxes. Table 7 shows the improved precision
rates, when adding the following filters to the processing pipeline:

• A minimum area filter with a threshold of 64 pixels,

• a maximum area filter set to 1/8th the size of the image,

• an apect ratio filter with the maximum width/height set to 1.6.

Overall these filters show an increase of precision by 6%− 15%, without affecting recall. Although
more strict filtering values would lead to higher precision values, this would also result in a lower
recall.

Summary While both approaches to text detection perform reasonably well, the closed contour
approach has the overall higher scores, and given its simplicity is the more convincing method of
the two. Inspecting the results showed that while the stroke detection methods may find bounding
boxes that the closed contour method does not (and vice versa), combining both approaches showed
only little gain in recall (∼ 3%), and a higher loss in precision. The recall rate of around 75%
means that 1 in every 4 characters is missed in detection. That is, this error is inherently included
in all recognition methods that operate on the detected bounding boxes.

5.1.2 Character Recognition on Known Locations

This section provides a performance comparison of the character recognition techniques discussed
in the previous sections. Here, we are only interested in the character recognition performance, and
not in the ability to detect characters. For this reason, a character detection step is not performed,
but instead the ground-truth bounding boxes are given directly to the character recognition module.
Performance is again tested on the synthetic test set of 6, 000 images with various distortions. For
performance evaluation, the evaluated character ce is compared to the true character ct. A hit is
assigned if and only if ce = ct. Overall performance is then given by the number of misses divided
by the number of test samples. This ratio is called the error rate.

All recognition methods require a training step on a set of labeled character images. These are
then used to train a classifier, or used as prototypes in the k-nearest neighbor search. In order
to test the influence of fonts used in training, multiple character image sets were generated. The
first set consists of alphabetical and numerical characters (60 in total), rendered in the Arial font
(120 point) only. Arial was chosen, as it is a relatively simple font, containing no serifs or other
decorative elements. The second set consists of roughly 3, 000 alpha-numeric character images,
rendered in various fonts (120 point). This set is used to analyze performance increase when
multiple fonts have been used for training. Finally, a third set was rendered consisting of about
12, 000 images, containing rotated characters of multiple fonts and sizes. This set was not used
for training any of the k-nearest neighbor methods as it would result in models too large to be
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sample contour skeleton

Table 8: Three examples of the training samples used for training the character classifiers. The
middle and right columns show the extracted contours and skeletons.

efficiently used in the classifier. Instead, the set was used for training classifiers with a compact
model, such as those of decision trees.

A contour based recognition method loads the character images of one of the training sets, and
applies the LoG operator for edge detection to each one. The edges are then converted to a vector
representation. Skeleton based methods perform an additional skeletonization step after the edges
have been extracted from each character image. Again, the skeletons are converted to a vector
representation. Table x shows a few example character images from the multi-font training set,
along with the extracted contours and skeletons.

Template Matching We begin our analysis of character recognition techniques with template
matching. In the most simple approach, the color variance of the image pixels that coincide with
the template mask is used as a quality measure for a match. The problem with this measure is
that templates that only match a part of the character may produce a high match quality. In a
slightly more advanced approach, the match quality is determined by the distance of edges in the
image to the edges in the template. Unlike the color variance approach, however, this technique
depends on the edge detection method, and may fail if edge detection has led to incorrect or noisy
edges. Table 9 shows the error rates of template matching using both approaches, using prototypes
from the Arial font only. While the quality measure using edges outperforms the more simple color
variance approach in the single-font test set (S), the color variance approach shows better results
in the multi-font case (FS). This suggests that the color variance approach is in fact more robust
to changes in the font. Furthermore, the results show that template matching is not suitable for
rotated characters or those distorted by perspective. Generally, template matching also shows a
large performance loss when matching to characters of an untrained font. Finally, it is interesting
to ask why 7% of the most simple set (S) are classified incorrectly. Inspecting the incorrect cases
shows that the remaining error can be mostly explained by glyph ambiguities, such as confusing a
’0’ for an ’O’, or a ’1’ for an ’I’.

S SR SP FS FSR FSP
TM (color variance) 12% 86% 74% 45% 91% 80%
TM (edge energy) 7% 82% 61% 51% 88% 78%

Table 9: Comparison of template matching results (error rates), using the color variance, and edge
energy measures (Arial font only).

To allow prototypes of multiple fonts, the best match measure is extended to a k-nearest neighbor
measure. To evaluate a good choice for k, the template matching approach (using edge energy) was
trained on the entire glyph training set, and tested on a subset of the synthetic data for multiple
values of k. As Table 10 shows, k = 1 returned the best overall results. This suggests that the
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S FS
k=1 14% 23%
k=3 17% 34%
k=5 19% 38%
k=10 32% 47%

Table 10: Template matching performance (error rate), using k-nearest neighbors classification and
the edge energy match measure on the S and FS test sets. A value of k = 1 produces the overall
best results, suggesting that classifying by best match outperforms a standard k-nn approach.

prototypes aggregated typically match a single font variant only, so that an evaluation by voting
is not adequate. Using k = 1, template matching was evaluated on the entire synthetic test set,
using the edge energy and color variance matching measures. The results are summarized in Table
21.

Given its sensitivity to any form of distortion, template matching is obviously not a good candidate
for text recognition of characters in random imagery. However, it does provide us with a baseline
performance of a naive solution to the text reading problem.

Orientation Histograms Given a contour, an orientation histogram is created from the orien-
tations of the points that lie on this contour. The histograms are made invariant to rotation, by
normalizing the values to the angle of the first principal axis. Here, contours were extracted from
the bounding boxes using the LoG edge detector. Two distance measures were tested for histogram
comparison: The standard Euclidean distance, and the Jensen-Shannon Divergence. Overall the
Euclidean measure showed higher accuracy (40% error rate), compared to the JSD measure (61%
error rate). Both methods however show surprisingly high error rates.

The poor results suggest that orientation features are not a reasonable basis for character classifi-
cation. Compared to simple template matching, it is more robust against rotation, though overall
it falls significantly short of the results obtained using template matching. While one conclusion
may be that orientation distribution simply is not discriminative enough to classify the full range
of characters, another origin of error may lie in the fact that only closed contours are used. We
have stated before that the largest closed contour is selected for feature extraction. Of course, if
an incorrect contour is chosen, or none at all, then we can expect classification to fail as well. In
fact, if we restrict our analysis to only the correctly identified contours, we find that performance
increases dramatically.

Table 11 gives a comparison between the overall error rate, and the error rate for the set of
correct contours only. That is the error rate was calculated for those cases only, where the contour
selected by the recognition algorithm was indeed the outer contour of the true character. (Note
that although the ground-truth contours are not given, the cases where the correct contour is
chosen was estimated by selecting those cases where the bounding box of the extracted contour is
nearly identical to the ground-truth bounding box). Although the LoG edge detector exclusively
produces closed contours, the correct contour identification error rates in Table 11 suggest, that
performance is similar to Canny closed contour identfication. The reason for this is that the LoG
operator usually fails to produce a correct contour in the same cases the Canny edge detector fails.
Furthermore, the results show that a percentage of the classification error can indeed be attributed
to the contour identification.

A summary of the orientation histogram performance is given in Tables 20 and 21. Overall, the
results show that orientation histograms alone are not a suitable feature for character classification.
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S SR SP FS FSR FSP Avg
Contour Error 29% 28% 28% 27% 27% 26% 27%
Overall Error 48% 65% 70% 56% 72% 73% 64%

Classification Error 30% 52% 60% 42% 61% 64% 52%

Table 11: Performance comparison obtained by orientation histogram classification. The first row
gives the percentage of contours misclassified. The error rates for all test samples are given in
the second row, while the third row restricts the analysis to those test samples where the correct
contour was identified. A total of 1, 471 prototypes were used for classification.

Fourier Descriptors While the orientation histograms from the previous section use contour
information obtained from the spatial domain, Fourier descriptors are contour features obtained
from the frequency domain. More specifically, the largest contour in a given bounding box is
subsampled into m equi-distant points, which are transformed into the frequency domain using the
discrete Fourier transform. The descriptors are normalized to obtain invariance against translation
and scale. To obtain starting point and rotation invariance, two approaches are tested: The
first uses the coefficient magnitude only, while the second applies normalization operations in the
spatial and frequency domain as explained in Section 3.4.2. Finally, the first n complex descriptors
are extracted (i.e. the descriptors a(b−n/2c), ..., a(0), ...a(bn/2c)), resulting in 2n real feature
values. The contour is then classified by a k-nearest neighbor search over the prototypes, using
the Euclidean distance measure.

In our experiments, we subsample contours into m = 256 points. To evaluate a good choice for the
number of descriptors to consider in classification, we conducted a series of test runs for various
values of n, on a subset of the test data (single font only). The results of these experiments are
plotted in Figure 28 (left). They show that minimal error rates are already achieved for n ≈ 15.
Furthermore, the plot shows that although descriptor matching by normalization performs better
for low values of n, their performance is nearly identical for any n > 12. However, the error
rates for both methods reach a lower bound at around 34%. This bound suggests that the error
is caused not by the Fourier descriptor classification itself, but by the contour extraction step
before. That is, the lower bound at 34% can be explained largely by the incorrect selection of the
closed contour. Figure 28(right) shows classification performance restricted to the set of correctly
identified contours. The graph shows that the isolated Fourier descriptor classification performance
can indeed reach error rates below 10%. Inspecting the remaining incorrect cases shows that the
misclassifications can again be mostly explained by glyph ambiguities.

Table 12 shows the performance results (restricted to the set of correctly identified contours) of
the Fourier Descriptor classifier trained on multiple fonts, and tested on the entire synthetic test
set. The results show a performance loss involved when taking the descriptor magnitude only:
Both the number of prototypes for training as well as the error rate show a significant increase,
compared to the descriptor normalization approach.

#proto S SR SP FS FSR FSP Avg
FD (Mag) 1054 25% 23% 36% 31% 27% 41% 31%
FD (Norm) 674 9% 15% 19% 13% 16% 23% 16%

Table 12: Performance (error rate) of Fourier Descriptor classification trained on multiple fonts on
the set of correctly identified contours only.

The overall performance of the Fourier descriptors can again be found in Tables 20 and 21. Al-
though both the orientation histogram and Fourier descriptor classifiers operate on the contour
only, the latter shows significantly lower error rates.
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Figure 28: Error rate of classification by Fourier Descriptors using the first n descriptors only. The
error rates for all test samples are shown on the left, while the graph on the right restricts the
analysis to those test samples where the correct contour was identified.

Skeleton Classification The skeleton of a character captures the structural properties of its
shape. A set of discrete features are extracted from the skeleton and used for classification. These
features are invariant to translation, scale, and to a certain degree, rotation and perspective dis-
tortion. The skeleton properties were extracted from the large character training set, contain-
ing 12, 000 character samples of various fonts, scale and rotation. Four classifiers were trained
and tested on these samples. Table 13 shows the classification performance using 10-fold cross-
validation for each of the classifiers.

classifier correctly classified
Naive Bayes 54%

C4.5 (decision tree) 72%
CART (decision tree) 71%

Table 13: Classification performance (percentage of correctly classified instances) on the 12, 000
character image set using 10-fold cross-validation.

The Naive Bayes classifier performance is far below that of the decision trees. These results
are expected, due to the different nature of the feature values, where some reflect total counts
(number of end-points, junction, etc.), and others normalized frequencies (such as the orientation
frequencies). Decision trees are generally a good choice for dealing with features of different
domains. The remaining error of 28% incorrectly classified instances shows that there is still a
considerable amount of ambiguity among the features. A look at the confusion matrix showed the
following frequent reasons for misclassification:

• As classification was performed using case-sensitive comparison, so that confusing a “c” with
a feature-identical “C” was counted as a misclassification.

• Often characters with nearly identical features, such as “O” and “D”, or “8” and “B” are
confused.

• The variation of scale and rotation in the training set increases the level of ambiguity, so that
characters such as “C” and “U” may have identical features.
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S SR SP FS FSR FSP Avg
Classification Error 11% 11% 26% 22% 25% 35% 22%

Overall Error 33% 30% 42% 42% 45% 52% 41%

Table 14: Recognition performance (error rate) of the skeleton feature classifier (using a C4.5
decision tree) on the synthetic test images.

Though these misclassifications result in an initially higher error, these common confusions can
usually be detected in a later stage and corrected. These correction mechanisms may use methods
such as confusion heuristics or dictionaries.

Table 14 shows the performance results of the skeleton feature classifier (using a C4.5 decision tree)
trained on the 12,000 character samples, and tested on the entire synthetic test set.

Summary While some of the methods discussed in this section are capable of recognizing con-
tours or skeletons with error rates as low as 16% on the entire synthetic data set, they rely on the
assumption that the contour or skeleton they operate on, are correct. The overall error rates show
that this assumption often does not hold, even though the correct bounding box was given. Thus,
to achieve reasonable recognition rates on random imagery, more sophisticated contour or skeleton
extraction methods must be found. However, while there are certainly possibilities to improve
character contour detection, it is unlikely that zero error can be obtained.

Template matching on the other hand, provides an alternative to the contour and skeletonization
approaches: It does not require a previous segmentation step like the other methods. Instead,
(using the edge energy method) every edge point in the image contributes to the match, regardless
of whether it is part of the character or not. The downside of this method is its high sensitivity
to rotation and perspective distortion. In the next section, RAST matching is used for character
recognition on known bounding boxes. It combines the advantages of template matching, and
the contour based methods, requiring no segmentation step while providing robustness against
translation, scale and rotation.

RAST Matching In this section character recognition using the geometric matching technique
RAST is inspected. As in template matching, no closed contours or other segmentation step is
required, and instead RAST operates directly on the edge data. The edges in the image are sub-
sampled to obtain a set of points. Orientations taken from the edge map are added to the points
to obtain edgels. Then, every prototype is matched to the edgels within the character bounding
box using RAST.

We will begin with a simple configuration of RAST, and iteratively add further parameters to
transformation space. In each iteration, performance will be evaluated, an the misclassified char-
acters inspected. This will allow us to learn why RAST is misclassifying certain samples, and open
room for parameter tuning. Another reason for this more detailed inspection is that we expect
RAST to perform very well: After all, RAST is capable of delivering the optimal match between
the prototype points and the image points. It is therefore interesting to analyze in which cases
despite this optimality RAST does not lead to the correct hypothesis.

We begin our experiments by setting all RAST transformation ranges to zero, i.e. RAST will
perform a single match iteration for each prototype without applying any transformations. For
now, we will also omit the multi-font cases, and first focus on the single font classes (Arial) only.
Note, that there is an implicit translation and scale modification of the prototype points so that
they fit inside the bounding box (preserving aspect-ratio of the original prototype bounds). The
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results of applying this configuration of RAST to the synthetic test data are given in Table 15.
As no transformation is applied, recognition performs poorly on the rotated characters. However,
performance on the non-rotated characters are comparable to the template matching results.

RAST S SR SP FS FSR FSP Avg
error rate 9% 60% 22% 22% 71% 38% 37%

Table 15: Error rates of character recognition using RAST matching with no transformation. As
expected, rotated characters are not recognized well.

In order for RAST to find matches for rotated characters, it may seem sufficient to set a reasonable
range for the rotation parameter rα. RAST will then find the best match for a prototype rotated
within this range. As Table 16 shows, setting rα = [−π/2,+π/2] does in fact increase robustness
against rotated characters. However, performance is still lower on rotated characters than on
upright ones.

RAST+R S SR SP FS FSR FSP Avg
error rate 9% 20% 16% 20% 46% 32% 24%

Table 16: Error rates of character recognition using RAST matching with rotation transformation.

The reason for this relatively poor performance is that the rotated characters introduce a number
of challenges. Specifically, when dealing with rotation the following issues arise:

• Shift of center : The center of a bounding box of a rotated character may not coincide with
the center of the character. Thus, if a matching algorithm fixes the prototype position at the
bounding box center, the prototype points may show a translation error with respect to the
image points. Figure 29 (left) shows a scenario where RAST was not capable of matching
the character as the bounding box center was too far away from the character center.

• Scale change: The bounding box size of a rotated character is usually larger than the actual
rotated bounding box of that character. Thus, a matching algorithm that fixes the scale of
the prototype to the scale of the bounding box, may be attempting to match an oversized
prototype. Figure 29 (right) shows such a case.

• Noise: As the bounding box of a rotated character is usually larger than the actual character,
the amount of background points within the bounding box may be substantial and even
exceed the amount of character points. A matching algorithm may then end up matching
the prototype to noise, instead of the actual character contour.

• Dimensionality : Of course, when allowing any kind of transformation, more (incorrect) pos-
sibilities for matching are introduced. For instance, when allowing no transformation at all,
there are only p possible matches, where p is the number of prototypes. If we now allow
matching to n distinct rotation angles, the match possibilities expand to np.

While the last problem is inherent with geometric matching, it should be noted that there is a
trade-off between the first two problems and the last one. That is, the translation and scale error
can be tackled by using appropriate translation and scale ranges in matching. However, these
additional degrees of flexibility will also result in a higher amount of false matches. Of course, false
matches are all the more likely if a lot of noise is present in the matching region. Thus, in order to
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incorrect center incorrect scale

Figure 29: Examples of two difficulties introduced by rotation. The points in gray are the image
points, while the black points are the points of the matched template. The matching points are
highlighted in green (for the model), and magenta (for the image). The left image shows incorrectly
assumed center coordinates, while the right shows an incorrect scale.

keep the likelihood of a false match at a minimum, it makes sense to first look at ways of reducing
noise.

Recall that both the Canny and LoG edge detectors apply a Gaussian smoothing operator to the
input image. Obviously, setting the smoothing factor σ to a high value results in less noise within
in the edge map. On the other hand, a high amount of smoothing removes details from contours,
which can be especially problematic for small characters. If we assume that the bounding boxes of
the character are known, we can employ an adaptive edge detector, that applies a smoothing factor
proportional to the image size. That is, instead of applying edge detection to the whole image
beforehand, we extract the edges separately for each location.

A second parameter that can be tuned to avoid noise, is the edge strength threshold used for
tracing (recall that two are used for the Canny edge detector). Setting this parameter to a high
value removes any contours that originated from weak edges in the image. While in many cases
weak edges are in fact an indicator for noise, sometimes the contrast between a character and its
background is low, and hence, the edges weak. It makes sense to model the tracing threshold t
proportional to the contrast of the pixels within the bounding box. It may, however, be difficult
to find a suitable definition of contrast. One method, that provided the overall best results, is to
simply begin with a high threshold thi, and check if a reasonably large contour was produced. If
not, a lower threshold tlo is used.

In Table 17 below, the results for RAST with rotation transformation are given - this time using the
adaptive edge detection methods. As the error rates show, performance has increased significantly
compared to the non-adaptive method before. Most of the remaining incorrectly classified samples,
are either due to character ambiguities, or arise from the translational and scale errors of the
bounding boxes.

RAST+R S SR SP FS FSR FSP Avg
error rate 7% 15% 11% 15% 43% 28% 20%

Table 17: Error rates of character recognition using RAST matching with rotation transformation
and adaptive edge detection.

To overcome these problems, we begin by specifying a scaling range of rs = [0.75, 1.0], where a value
of 1.0 specifies the scale of the model fitted to the bounding box. As the bounding box is always
at least the size of the character, the range of scale has an upper bound of 1.0. Finally, we specify
the translation ranges rx = [x − 1

4w, x + 1
4w], and ry = [y − 1

4h, y + 1
4h], where w and h are the

width and height of the character bounding box. The results of RAST using these transformations
are given in Table 18. Using rotation and scale transformation, the RAST detector shows the
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S SR SP FS FSR FSP Avg
Fourier D. 34% 36% 42% 55% 54% 59% 47%
RAST+RS 5% 11% 10% 15% 31% 26% 16%
RAST+RST 4% 9% 17% 34% 37% 43% 24%

Table 18: Error rates of character recognition using RAST matching (with adaptive edge detection),
and rotation (R), scale (S) and translation (T) transformation. The Fourier descriptor error rates
are shown for comparison.

RAST S SR SP FS FSR FSP Avg
Fourier D. 32% 36% 40% 33% 40% 43% 37%
RAST+RS 6% 15% 11% 8% 20% 11% 11%
RAST+RST 5% 12% 19% 20% 27% 28% 19%

Table 19: Error rates of character recognition using RAST matching, trained on multiple fonts
with rotation (R), scale (S) and translation (T) transformation. The Fourier descriptor error rates,
trained on multiple fonts, are shown for comparison.

overall best results. Enabling translation on the other hand, shows an increase in the error rate.
We assume the higher error is due to the high dimensionality, i.e. by enabling all transformation
options, false hypotheses may match well when transformed in rotation, scale, and translation.
The higher error rates for the more stylized font sets support this assumption. In comparison
to the Fourier Descriptors, RAST shows greatly improved performance. It is interesting to note
that the classification performance of the Fourier descriptors on correctly identified contours only
was similar to the RAST performance shown here. This fact gives an impression of the scale of
improvement made by omitting a separate segmentation step.

At this point, it should be noted that RAST performance on unknown fonts is already quite
remarkable. While training on multiple fonts is likely to increase performance on the font sets even
more, the additional prototypes may also cause more confusion. Table 19 shows the recognition
results for RAST matching, trained on the font training set, using rotation, scale and translation
transformations. While performance increases on the multi-font test sets, the single font sets show a
slightly higher error rate than when using Arial prototypes only. This is expected, as the additional
prototypes increase the room for false matches.

Finally, Figure 30 shows two cases which highlight the strengths of using RAST. Note that in all
these cases, contour based methods would have failed.

Summary The low error rates of the RAST matching method show that omitting a segmen-
tation step can lead to a drastic improvement in recognition rates. In turn, the comparitively
poor performance of the previous methods show just how severely detection errors influence the
recognition result. Tables 20 and 21 summarize the results obtained in this section.

While the ground-truth bounding boxes were used in place of a detection step in this section,
the next section deals with character detection and recognition, given no prior character location
knowledge. Just as in this section, the performance of segmenting the image into character regions
before recognition is compared to recognition on the entire image using prototype matching and
no previous segmentation step.
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Figure 30: Examples of images, where RAST matching succeeds in determining the character class
while feature classification methods fail.

S SR SP FS FSR FSP Avg
Template Matching (EE) 7% 82% 61% 51% 88% 78% 61%
Orientation Histograms 42% 62% 69% 62% 76% 78% 65%
F-Descriptors (Mag) 37% 36% 42% 60% 61% 62% 50%
F-Descriptors (Trans) 34% 36% 42% 55% 54% 59% 47%

RAST 9% 60% 22% 22% 71% 38% 37%
RAST(RS) 5% 11% 10% 15% 31% 26% 16%

Table 20: Character classification results (error rates), using Arial font glyphs as training set only.

#proto S SR SP FS FSR FSP Avg
Template Matching (EE) 677 10% 79% 58% 20% 81% 65% 52%
Orientation Histograms 1471 48% 65% 70% 56% 72% 73% 64%
F-Descriptors (Mag) 1054 45% 43% 53% 47% 47% 56% 49%
F-Descriptors (Trans) 674 32% 36% 40% 33% 40% 43% 37%
Skeleton Classification (tree) 33% 30% 42% 42% 45% 52% 41%

RAST (RS) 997 6% 15% 11% 8% 20% 11% 12%

Table 21: Character classification results (error rates), using multi-font prototypes.
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S SR SP FS FSR FSP
CC+FD 47% / 63% 47% / 63% 42% / 56% 48% / 65% 45% / 62% 38% / 52%

CC+RAST 52% / 70% 50% / 69% 49% / 65% 56% / 70% 45% / 60% 41% / 63%
CC+Skel 43% / 53% 43% / 61% 38% / 50% 38% / 46% 31% / 42% 32% / 40%

Table 22: Character detection and classification performance (precision / recall)

S SP FS FSP
RAST 76% / 86% 46% / 74% 77% / 84% 57% / 61%

Table 23: Joint character detection and recognition (precision/recall) using RAST.

5.1.3 Character Detection and Recognition

Up to this point, the tasks of character detection and character recogntion have been isolated. In
the following, these two essential steps are combined, and tested on the synthetic test data. We
begin by using the separate approach of text reading, where the character detection is a distinct
step, followed by the character recognition step on the detected bounding boxes. Table 22 shows
the results of applying closed contour recognition followed by a selection of the discussed character
recognition techniques. The closed contour boxes were filtered using the size and aspect ratio filters.
The results indicate that while RAST matching shows the best performance, all methods suffer
from errors introduced in the character detection stage. Furthermore, it may be surprising that
RAST does not outperform the other methods to the degree it did in the previous tests. However,
as the detected text locations are the locations of the closed contours, RAST is just as likely to
fail at recognition as the other contour based methods. The skeleton classification methods shows
the overall lowest scores. Despite previous results showing a recognition performance of over 90%
for skeleton classification, this only holds if the correct contour (for detection) and skeleton (for
recognition) was chosen for feature extraction. Selecting any one of these incorrectly leads to an
incorrect result, and explains the very poor performance of this method.

To avoid these detection errors, the character detection phase is eliminated altogether in the
following, and RAST is directly applied to the entire image in the joint approach. As this may
take a considerable amount of time to compute (see Table 24), RAST is configured to match using
translation and scale transformations only. Hence, in the following, the rotated test cases are
omitted. Furthermore, each of the sets is subsampled to 15% of the original image count. The
RAST match score uses normalized recall values over all image points, and the number of matching
passes was set to 1. Table 23 shows the results obtained when applying RAST to the synthetic test
images. Note, that for the test sets with perspective distortion (SP and FSP), the tolerance value
was increased to make up for the displaced character edgels. This results in a lower precision for
these two sets. Overall the results outperform those from the separate approach. This suggests
that geometric matching on the entire image without a detection step may indeed lead to a lower
error rate. However, RAST matching tends to fail or show very poor precision in images that
are very noisy. In such cases, the matching algorithm produces numerous false positives. Since a
normalized recall measure over all image edgels is used, matching to incorrect image locations may
distort the recall rates of all matches.

5.1.4 Summary

The methods described in this section can be split into those using a separate segmentation step,
and those that apply recognition to the entire image. The results of the separate approach showed
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method time (in s)
CC+Fourier descriptors 0.3
CC+Skel (Thinning) 3

CC+Skel (Ridge tracing) 0.5
CC+RAST (RS) 24

RAST (no segmentation) 500

Table 24: Average amount of time, in seconds, the presented methods require to process one
synthetic image.

that the errors introduced in the detection have a large impact on the performance of the recognition
step. If the correct contours are identified, the Fourier descriptors provide the overall best results,
while skeleton classification is slightly more robust against rotation. Character detection by closed
contours outperforms the more complex stroke detection method, while a combination of the two
leads to slightly higher recall with a drop in precision. Omitting segmentation steps entirely
shows the overall best recognition performance. While template matching over an entire region is
generally too expensive to compute if robustness against scale and translation is required, RAST
matching provides a much more efficient alternative, and is configurable to match a number of
transformations. However, as table 24 shows, despite its high efficiency, RAST matching still
takes considerably more time than separate detection methods, and may not be feasible for most
applications.

5.2 Word Recognition on Real-World Data

In this section, the task of character detection and recognition is extended to word detection
and recognition. The discussed methods are tested on real-world photography containing text
in natural scenery. In order to obtain results comparable to text detection work conducted by
other authors, the tests are run on the ICDAR 2003 image sets. This publicly available dataset4
was used in the recent text detection competitions ICDAR 2003 and ICDAR 2005. The dataset
contains 258 images in the training set and 251 images in the test set. The images are full-color
and range in size from around 307 × 93 to 1280 × 960. Nearly all images contain text found in
natural scenery, though some do not contain text at all. Furthermore, the ICDAR sets are known
to be very challenging. Figure 31 shows a few examples of the challenges presented by the image
set.

In addition to character detection and recognition, a grouping step is performed, to convert the
set of character candidates to a set of word candidates. The output of the recognition system is
then a set of words along with their bounding boxes. These bounding boxes are compared to the
true bounding boxes, which are provided in the ICDAR dataset. Again, the match measure mp is
used, which for two boxes is given by the area of intersection divided by the area of the minimum
bounding box containing both boxes. For each evaluated rectangle, the closest match is found in
the set of true rectangles, and vice versa. Hence, the best match m(r,R) for a rectangle r in a set
of rectangles R is given by

m(r,R) = max{mp(r, r0) | r0 ∈ R}
4http://algoval.essex.ac.uk/icdar/Datasets.html
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unusual style strong specular highlights broken characters

occluded text small text difficult segmentation

Figure 31: Sample images from the ICDAR train and test sets, displaying some of the difficult
challenges they present.

Then, the definitions for precision and recall are

P =
∑
r∈Em(r, T )
|E| ,

R =
∑
r∈T m(r, E)
|T | ,

where E and T are the sets of estimated and ground-truth rectangles respectively. The standard
f -measure is used to combine the precision and recall figures into a single measure of quality. The
relative weights of these are controlled by a paramater α, which is set to 0.5 to give equal weight
to precision and recall:

f =
1

α
P + 1−α

R

These performance measures are consistent with the ones used in the official ICDAR evaluations
2003 and 2005 [27, 26].

The first experimental setup deals with text detection only, and should give a performance com-
parison of the two detection methods discussed in the previous sections. Table 25 shows the results
obtained for the closed contour and stroke width variance detectors. Note that an improvement of
the precision can be expected once character recognition is used with the possibility of rejecting
incorrect candidates. Due to the higher performance of the closed contours both in f -measure and
computational efficiency, the following experiments will all use this method in the text detection
step.

precision recall f-measure
Closed contours 20% 46% 26%

Stroke width variance 21% 2% 4%

Table 25: Comparison of the text detection methods on a subset (250 images) of the ICDAR data.

In the second experimental setup, separate detction and recognition is used, and the closed contour
and stroke width variance methods are used for detection. Recognition is tested using the two

62



precision recall f-measure word recall
CC+FD 50% 42% 46% 33%

CC+RAST 49% 43% 46% 34%
Hinnerk Becker 62% 67% 62% -

Alex Chen 60% 60% 58% -
Ashida 55% 46% 50% -

HWDavid 44% 46% 45% -
Wolf 30% 44% 35% -

Todoran 19% 18% 18% -

Table 26: Separate character detection and recognition on ICDAR test data.

most promising techniques, namely Fourier descriptors and RAST matching with rotation and
scale variation. The grouping method is configured with the following settings:

• Constraints: Characters are grouped that fulfill the distance constraint (1.0 times the charac-
ter height), the y-overlap constraint (0.5 times the character height), and the y-size constraint
(1.5 times the character height).

• Operations: Holes are removed, spaces detected, and the group characters sorted by x-
position.

• Word Extraction: Words are extracted from the groups, using a standard English dictionary5,
enriched with the words found in the ICDAR datasets.

Table 26 shows the results obtained for text detection and recognition on the ICDAR data sets,
using separate detection and recognition. The detection step using closed contours gives an f -
measure score of 0.46. The word recall gives the percentage of words matched in the entire set of
true words. Here, recognition rates of 33% and 34% are obtained. As RAST matching is performed
on the locations of the closed contours, its performance is only minimally better than that of the
Fourier descriptors. The table shows some of the results obtained by the ICDAR 2003 and 2005
competition entries for comparison. These results suggest that closed contour deteection is capable
of performing reasonably well on the text detection task, and outperforms a number of the methods
submitted to the competition. As none of the submitted ICDAR methods performed the task of
text reading, a comparison cannot be given here.

Figures 32 and 33 show examples of where the separate approache used here produces good results,
and which cases it fails. An analysis of the results showed, that the most frequent reasons for failure
are:

• The closed contours did not lead to the correct character bounding boxes.

• The text was heavily stylized so that character recognition did not succeed.

• A word consisted of a single character only, and was thus eliminated in the group filtering
stage.

Hence, in a final series of experiments joint detection and recognition using RAST is tested on the
ICDAR set. As each such detection operation takes a considerable amount of time (see Table 24),
three subsets of the ICDAR data are used, instead of the entire image set. The images selected for
each set should specifically highlight the advantages or drawbacks when using joint detection and
recognition. Specifically, each of the three sets contains images with the following properties:

5found on most UNIX-like systems under /usr/share/dict/words.
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Corona, Extra Boundary, Road

Nick, Hornby, High, Fidelity trinity, street, studios

Figure 32: Example images where the seperate approach (using closed contours and Fourier de-
scriptors) produces good results. The ground-truth is shown in green, and the evaluated results in
red. The returned words are given below the image.

no words returned SzO

MILL, II, KN no words returned

Figure 33: Examples where the separate approach fails. Again, the ground-truth is shown in green,
and the evaluated results in red.
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1. Basic set (20 images): This set contains images for which the separate approach produced
good results. This set should show whether or not a joint approach produces similarly good
results.

2. Difficult set (35 images): This set contained images, where a separate detection and recog-
nition method did not provide good results, even though the generated edge maps were
reasonable, i.e. characters can be recognized in the edge map by a human observer. The
failure of a separate approach was mostly due to linked characters or broken edges.

3. Noisy set (20 images): This set contains very noisy images, where characters are difficult
to distinguish from noise - even for a human observer. Separate detection and recognition
mostly fail at this task.

As the joint detection and recognition tends to produce more false positives, the grouping con-
straints are extended by a slope-constraint that omits any group of characters with a text-line
slope more than 0.2.

Basic Set The results for the joint approach on the basic set are given in Table 27. While RAST
shows a higher f -measure, it does not perform as well in word recognition as the separate approach.
An analysis of the results showed that these errors are mostly due to errors in grouping, which must
deal with a much larger set of character hypotheses than when operating only on closed contours.
For instance, RAST often matches simple characters, such as “I” onto and in between the actual
characters. The latter phenomenon was not detected when testing on the synthetic data, where
only one character was present at a time. Often the grouping step generates incorrect character
hypotheses interleaved with the correct ones. Furthermore, spacing may be incorrectly identified,
so that words are split at the wrong locations. Hence, if a matching method like RAST is used
for matching characters, a more sophisticated grouping and filtering is required to deal with the
higher number of interleaved false positives.

precision recall f-measure word-recall
CC+FD 72% 78% 75% 81%
RAST 78% 83% 80% 66%

Table 27: Comparison of the separate and joint character detection and recognition on the basic
subset.

Difficult Set The difficult set contains images, where the separate approach fails at locating
atleast one of the text boxes. Table 28 shows a comparison of the separate and joint approaches
on the difficult set. As the results show, using a joint approach can in fact improve detection and
recognition scores on these images.

precision recall f-measure word-recall
CC+FD 31% 39% 33% 11%
RAST 53% 58% 52% 21%

Table 28: Comparison of the separate and joint reading approaches on a subset of the ICDAR test
data.

Figure 34 shows two example images taken from the difficult set, that give insights to why the
detection step fails for closed contours, and why RAST matching succeeds. Both edge-maps show
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separate approach joint approach edge map used

separate approach joint aproach edge map used

Figure 34: Example images from the difficult set, where the joint approach succeeds while the
separate approach does not.

character contours that are not closed, but connected to the background or specular highlights.
Obviously, closed contour methods do not perform well under such circumstances. The RAST
algorithm on the other hand still finds enough edgels that contribute to the correct character
prototypes to successfully recognize the words in both images.

Noisy Set Finally, the joint and separate approaches are tested on a very noisy set. These are
usually images with strong specular highlights, that in turn lead to very noisy edge maps. Table 29
shows the results of applying the separate and joint approaches to the noisy image subset. While
the separate approach produces acceptable scores, the joint approach fails to show reasonable
perfomance for the image set. The reason for this is that the matching approach yields a high
number of false positives, that are too numerous and spread over the image for the grouping step
to handle correctly. Figure 35 shows a representative image from this set. Given that the text is
difficult to read even for a human observer, the poor performance on such images is not surprising,
and may not be an issue in applications, where cleaner images are expected.

precision recall f-measure word-recall
CC+FD 42% 36% 39% 17%
RAST 20% 9% 12% 0%

Table 29: Comparison of the separate and joint reading approaches on the noisy subset of the
ICDAR test data.

5.2.1 Summary

As the results in this section show, even simple methods like closed contours lead to reasonable
text detection performance on the very challenging ICDAR datasets. Overall, when using separate
text detection and recognition steps, the Fourier descriptors provided the best trade-off between
recognition rates and computational effiiciency. While the synthetic tests showed that RAST
matching on known bounding boxes can greatly improve performance, these improvements could
not be measured here, as RAST was applied to the bounding boxes of the closed contours only.
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original extracted edges

Figure 35: Example of an image from the noisy set, along with the extracted edges.

Using a joint approach can improve detection and recognition results even further, though the
higher recognition scores come at a cost of very long computation times. Furthermore, the joint
approach fails when a large amount of noise is present in the image. In fact, since all of the
approaches discussed here are based on edges, they all suffer a loss in performance when edge
detection produces noisy results. In case the correct bounding boxes were indeed found, the
character recognition works reasonably well. However, as a number of words in the image are
missed in detection, this leads to an overall lower recognition score.
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6 Conclusion and Perspectives

6.1 Conclusion

Automatic reading of text in natural scenery is a challenging problem. In this work, various meth-
ods were presented to accomplish the tasks involved. A text reading framework was implemented
and discussed, which contained modules for preprocessing, character hypothesis generation, and
grouping. A quantitative evaluation of the text detection and recognition methods these was given.

To generate hypotheses two main approaches were used: The separate approach, in which a char-
acter detection step precludes the recognition step, and a joint approach, where detection and
recognition are performed in a single phase. Using closed contour detection as a means of text de-
tection showed very satisfying performance on real-world data, and in case of the ICDAR datasets,
even outperformed a number of entries of the previous competitions in terms of precision and recall.

In order to extract text strings from the discovered bounding boxes, a number of recognition
methods were presented and evaluated. While some recognition techniques base their decisions
on features extracted from the character contours or skeletons, the prototype matching techniques
match a set of template characters to the image. In the case of feature classification, the Fourier
descriptor method showed the overall best results. A downside to using such a technique is that in
order for a classifier to produce the correct output, the outer contour of the character must have
been correctly identified in the first place. Since a perfect contour extraction cannot be expected,
it is most likely that a combination of features is best for classification.

Prototype matching on the other hand, does not require such a segmentation step, and can be
directly applied to the image or image edges. In this work, a novel scene text recognition approach
using RAST was introduced. Applying RAST to natural imagery showed potential in detecting
even difficult to segment text. In the presence of a high amount of noise, however, RAST pro-
duced a high number of false positive character hypothesis that confused the subsequent grouping
algorithm. Nevertheless, prototype matching remains an interesting topic for future work on joint
text detection and recognition.

6.2 Outlook

Though numerous text detection and recognition methods have been implemented and evaluated
in the context of this work, there are many more promising techniques to consider. The methods in
this work are all based on character shape, represented by either the character contour or skeleton.
A number of promising detection techniques based on texture have been proposed, and are worth
comparing to the shape-based methods described here. Readers interested in such methods are
referred to the Related Work section. Furthermore, the recognition techniques used here could be
extended to include those that make use of textural properties.

However, while implementing additional detection and recognition methods may give insight into
the compared performance of the text reading techniques, it is doubtful that any one of them
will greatly improve performance. As suggested in [32], a combination of techniques is required to
achieve overall satisfying results. In fact, currently we are investigating a probabilistic approach, in
which multiple detection and recognition results are combined to a probabilistic model of character
hypotheses over the entire image. The probability of a hypothesis is dependent on both the results
obtained by detection and recognition, as well as the probabilities of neighboring hypotheses. We
expect the performance of such a system to exceed that of the single-method approach used here.

As RAST shows potential for use in character recognition, it makes sense to conduct more research
in this area. Specifically, additional transformations such as skewing or thickness varariation
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could be implemented and evaluated. Most importantly, methods are required that improve the
robustness against noise. While one solution would involve tuning RAST to avoid matches in noisy
areas, a different approach would involve extending the grouping mechanism to better deal with
the large number of character hypotheses generated.

Finally, further evaluation of the current methods could give insights to the reading system perfor-
mance on imagery of other domains. For instance, the current system could be evaluated on images
of book covers or movie posters, where certain additional constraints may improve recognition. On
the other hand, the ICDAR data used here did not include many examples of rotated or heavily
perspective distorted text. In an additional dataset with more images of these types, robustness
against these transformations could be better evaluated and improved.
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