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Abstract

Content-based video retrieval (CBVR) tasks such as autoannotation or cluster-
ing are based on low-level descriptors of video content, which should be compact
in order to optimize storage requirements and e�ciency. In this thesis, the
semantic compression of video is addressed, i.e. the reduction of low-level de-
scriptors to a few semantically expressive dimensions. To achieve this, topic
models have been proposed, which cluster visual content into a low number of
latent aspects and have successfully been applied to still images before. This
thesis analyzes the use of topic models for semantic compression in a variety of
CBVR tasks such as autoannotation, clustering, and shot retrieval.

In quantitative experiments on web video content, it is demonstrated that
topic models outperform other dimensionality reduction techniques such as Prin-
cipal Component Analysis or Restricted Boltzmann Machines, reaching a per-
formance comparable to higher-dimensional bag-of-visual-words descriptors at a
compression rate of 1/20. It will be shown that this result can be improved further
by using multimodal features, while maintaining the same resulting compression
rate. Another approach that will be exploited for substantial performance en-
hancement is the use of large but noisy data, as opposed to a small, manually
selected set of training samples.

Finally, the temporal structure o�ered by videos, which has thus far been ne-
glected by topic models, is employed, using a combination with Hidden Markov
Models as recently proposed in the text domain as 'Hidden Topic Markov Model'
(HTMM). An analogy between sentences in the text and shots in the video is
drawn, such that changes of semantics are enforced to coincide with shot tran-
sitions. Compared to a plain topic model, this adaption leads to a further per-
formance gain in a clustering scenario.
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Chapter 1

Introduction

Assume a video collection of your family which was build throughout the years.
Would it not be great if it was possible to easily �nd all those video shots that
contained your grandfather? Imagine if this could be done by just showing one
example picture of your grandfather. There are a lot of these scenarios where
content-based video retrieval can bene�t humans (see [1, 26, 66]): a journalist
might be looking for appropriate footage for an article about a particular soccer
player � CBVR can help by sorting all video shots of that player according to
their content (such as goals or interviews), like a big catalog in which one page
contains all videos of a particular topic. A system that learns what programs
an avid TV fan likes could learn to recommend new programs, reducing the
risk of watching unknown programs that turn out to be unsatisfying. Copyright
violations are also an issue where CBVR is useful, as it can provide a system
that helps users �nd videos that are alike. Automatic annotation of important
events within a soccer video such as goals or red cards, would allow someone who
missed part of the game to gain a quick summary � just like a personal highlight
reel. As a �nal example, consider looking for a particular video, and being aided
automatically during that search. Imagine starting out with a particular soccer
team, then focusing on a certain player of that team, before �nally yielding all
videos of that player in a speci�c season with just a few mouse clicks.

The demand for such applications is already there, as a wide variety of
video collections exist. These range from small home video collections to huge
archives of TV stations. The web also contains a wide variety of media: roughly
60,000 new videos are uploaded to YouTube.com per day, and in the image
domain, several thousand images per minute are added to Flickr.com. This
leads to the question on how to extract the information from within media �les
and how to make this wealth of information easily accessible to the user. In
order to achieve this goal, it is necessary to be able to capture the semantics
automatically and describe it with as few bytes as possible. Ideally, envision
a video about politicians which has embedded information in the sense that it
'knows' that 'at seconds 43-55, the german chancellor is speaking, followed by
the french president'. Unfortunately, it is not feasible to extract this type of
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Figure 1.1: An example video of a newscast. Each shot of the newscast belongs
to a particular category, like politics, sports, the talking news anchor or the
weather. Capturing the semantics of the individual categories is an important
step for content-based video retrieval. Topic models, the focus of this work, can
capture these semantics by associating image parts (like a soccer player, a ball,
the green lawn) with speci�c topics (like soccer).

detailed information manually for videos on a large scale.

CBVR works by extracting interesting properties, so-called features of a
video ('This soccer video has a lot of green areas' ) and then using these features
from multiple videos to derive a statistical model ('Most soccer videos have green
areas, thus it is likely that a video with green areas is about soccer' ).

While there are already some automated approaches in the image domain
(e.g. face recognition, classi�cation of indoor against outdoor scenes, etc. [4,
14, 21, 73, 76, 77]), these cannot be easily applied to the video domain for sev-
eral reasons: �rst of all, video-speci�c features like motion are not considered.
Second, and more importantly, the amount of data is magnitudes higher for
videos than it is for images (as an example, a 60-second video with 25 frames
per second consists of 1500 images). One strategy to resolve this problem is to
employ dimensionality reduction techniques, which reduce the amount of data
to describe an image. As the semantics of the video should not change due
to dimensionality reduction, this process can be referred to as semantic com-
pression. Dimensionality reduction techniques have to ful�ll several conditions:
they have to be adaptable to video content, scale and generalize well, and be
reasonably fast while achieving good compression results.

One solution to achieve this sort of dimensionality reduction are topic mod-
els, which will be the main focus of this thesis. Topic models have originally
been developed in the text domain and have already been successfully applied to
the image domain [3, 21, 58, 63, 73]. The underlying idea is to decompose a doc-
ument (or image) collection such that each document is described by a mixture
of latent associated topics. This approach also makes sense in the video domain:
a newscast video might generally consist of topics such as 'sports', 'interview',
'weather' and so on (c.f. Figure 1.1). The representation of a video as a topic
mixture can be used for semantic video compression, which is the description of
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semantics of a video with only a few bytes. A big advantage of topic models is
that they work unsupervised, i.e. they estimate what topics exist within videos
without additional manual help. Being able to perform unsupervised learning
is a key requirement, as manually annotated training data is hard to obtain at
a large scale.

This work will investigate the use of topic models for semantic compression
in the video domain. In particular, several appearance and motion features will
be evaluated. Their dimensionality will be reduced using di�erent techniques,
and the tradeo� between a low target dimensionality and a high retrieval per-
formance is explored. The combination of di�erent features to enhance per-
formance will be investigated. Finally, the impact of shot information as well
as the temporal structure of shots will be utilized for topic models to further
improve performance.

This thesis is structured as follows: in Chapter 2, the general pipeline for
content-based video retrieval will be outlined and the underlying concepts of
each step will be explained. Chapter 3 will discuss feature extraction and di-
mensionality reduction techniques in more detail, as they are closely related in
the task of producing low-dimensional video descriptors. Chapter 4 will then
explain di�erent topic models and how they can be applied to video content.
Chapter 5 describes the experiments conducted in this work and concludes that
topic models are indeed a good choice for semantic compression. Finally, Chap-
ter 6 will summarize this work and discuss potential further research areas.
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Chapter 2

System Overview

Several processing steps (c.f. Figure 2.1) are required in order to achieve the
main goal of content-based video retrieval (CBVR): aid the user in searching for
videos by analyzing their contents. The �rst section of this chapter will outline
the general steps required for CBVR. The rest of this chapter will then explain
the several processing steps in more detail.

2.1 Architecture of Content-Based Video Retrieval

Systems

In general, CBVR consists of multiple steps, which will be brie�y outlined here.
A video will �rst be preprocessed (e.g. adjusting contrast), followed by the
feature extraction step, which will emit a video description. In the case of a
soccer video, a discriminative property that might be captured is the fact that
a lot of green (the grass) occurs. As these feature descriptors are usually high-
dimensional, a dimensionality reduction step may be applied to enable further
processing, resulting in a low-dimensional feature vector. Finally, this feature
vector can be used as input to statistical analysis. As an example, a soccer
video might be used as a query video to �nd similar videos � in that case, more
soccer videos should be returned.

Preprocessing Before actually trying to identify key properties of a video,
it can be useful to gain additional meta information about it, which is done
in a preprocessing step. An example would be the estimation of occurrences of
transitions of one video shot to the next, as the shots de�ned by these transitions
might have varying semantic meanings (e.g. in a newscast, an anchorman might
�rst talk about a war, before some footage about a soccer game is shown).
This task is called shot boundary extraction and will be detailed in Section 2.2.
Another example is the thought that it might be interesting to know which
frames are representative for a video. This process called keyframe extraction
will be discussed in Section 2.3.
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Figure 2.1: A generic pipeline for content-based video retrieval as outlined in
Section 2.1. As producing low-dimensional features is the key part of this thesis
and feature extraction and dimensionality reduction are both required for this,
both subjects will be discussed in Chapter 3. Chapter 4 will then deal with topic
models, which are speci�c models that can be used for dimensionality reduction
and are the main focus of this thesis.

Other possibilities of preprocessing include rescaling the videos to have equal
size, noise reduction or contrast enhancement.

Feature Extraction In general, a video is a temporally ordered sequence of
images where all images share the same height and width. However, this does
not imply any information about the similarity of any two given images. While
it is possible to compare them on a per-pixel basis, this is a bad solution in
practice for a variety of reasons. Some examples include computation time as
well as issues with translated, scaled, or rotated images, variance in brightness
etc. This makes it necessary to extract features for each frame, which should be
low-dimensional (so comparison of features of di�erent frames becomes feasible)
and invariant to variations (like di�erent scales) of the image. Properties which
have to be ful�lled by features will be discussed in Section 2.4.

Dimensionality Reduction As videos contain a very large amount of frames,
the computed resulting features would accordingly require a lot of storage space,
which makes further processing very slow or even impossible. While this is
not as bad in the case of single still images, it makes it absolulety necessary
in the video domain to reduce the amount of data while preserving as much
information as possible. One simple way to achieve less data is to only extract
features for keyframes, as those are likely to contain the most discriminative
information about a video. As less data also implies less information, the goal
of dimensionality reduction is to minimize information loss while maximizing
the 'compression'.
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The tasks of feature extraction and dimensionality reduction are highly in-
tertwined � extracted features can have varying dimensions, and di�erent di-
mensionality reduction methods can be employed depending on the properties
of features. As the goal of this thesis is to enable CBVR, and this absolutely
requires low-dimensional feature vectors, feature extraction and dimensionality
reduction are the key parts of this thesis. Thus, these topics will be discussed
together in detail in Chapter 3. Topic models, which are a speci�c technique
that can be used for dimensionality reduction and which are the main focus of
this thesis, will be explained in Chapter 4.

Statistical Modeling Given the extracted, low-dimensional features for all
videos, it is now possible to apply pattern recognition methods to allow CBVR.
The actual techniques that are employed highly depend on the task that should
be achieved. Three possible applications will be brie�y outlined here.

� Given a set of tuples (videos, category label) that serve as training ex-
amples, the system learns to associate previously unseen videos with a
category label. This task is called classi�cation. An example for this lies
in the protection of minors from sexually o�ensive material: given some
sexually o�ensive videos and some counter-examples (each being marked
as either o�ensive or non-o�ensive), the system needs to derive a model
from analyzing these videos. Using this model, the system then should
be able to decide for new, previously unseen videos if this new video is
sexually o�ensive.

� The task called clustering aims at identifying groups of videos. One exam-
ple application where clustering is necessary is browsing: if the system is
able to arrange all videos in the dataset according to the property desired
by the user, this helps him to quickly access those videos he is looking
for. As an example, given a big archive of soccer games, a user might
be looking for all those games with a particular player � if the system is
able to cluster all videos according to the players contained within, this
will greatly ease the search process for the user. Note that clustering for
browsing can also be useful on a shot level: here, particular game events
like goals, free kicks, red cards etc. might be desirable clusters.

� K-similarity search tries to identify the k videos which are most similar to
a given query video and return them. Note that 'being similar' can have
several semantic meanings: given a video of a golf course, 'good' matches
might either be about golf tournaments or about green grass. Ideally,
handing a video of a soccer player scoring a goal would return videos with
more goals scored by the same player. Although it is possible to compare
the query video with each video in the database, this approach would be
highly ine�cient as it requires linear time. Instead, faster data structures
are desired.

These exemplary tasks and one method to solve each problem will be ex-
plained in more detail in Section 2.5.
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Figure 2.2: Standard deviation of pixel intensities. As a rapid change occurs
during fades, the standard deviation can be used for fade detection. The picture
was taken from [42], p. 7.

2.2 Shot Boundary Detection

Shots are the smallest semantic units within a video and are comprised of an
ordered set of frames. Two shots are separated by a transition, like a fade-over
or simply a hard cut. As the goal of this thesis is to gain semantic information
about a video, information about shots might be interesting, either as infor-
mation that can be directly conveyed to the user (e.g. in a browsing task) or
intermediate results ('there are 6 shots in this video and 3 of these shots are
very similar, so there are likely di�erent 4 concepts in the video'). This is were
the task of shot boundary detection comes in, which is still a heavily researched
topic. Some basic ideas for detecting the most frequently used transition types
as outlined in [42] are discussed.

Hard Cut Detection Hard cuts are two directly concatenated shots without
any sort of transition in-between. As this is a very rapid change assuming
appropriate features (e.g. color distributions), they are rather easy to identify.
One example for such features would be simple color histograms, which are
usually su�cient for a detection of hard cuts according to Lienhart [43].

Fade Detection Fades are gradual changes to/from a scene from/to a mono-
tone (e.g. completely black) image. If the scene is disappearing, this is called
a fade out, otherwise the transition is called a fade in. One way to detect this
is by analyzing the standard deviation of the pixels colors (c.f. Figure 2.2):
Given a normal image, the standard deviation should be fairly high, while in
a very monotonic image the pixel deviation will be very low. Thus, a fade can
be detected whenever there is a rapid change between temporally close pixel
standard deviations of frames.
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Another possible approach is edge detection - in a fade-in, edges will slowly
build up as more details of the image become available. The same is true for
fade-outs, where edges will gradually disappear. Thus, quick changes of the
amount of quick edges can be an indicator for fades. However, it is reported
that approaches based on the standard deviation outperform edge-based fade
detection in practice [42].

Dissolve Detection A dissolve is de�ned as blending over from one shot to
another. Thus, while the �rst shot slowly fades out, the second one is fading in
- this is why a dissolve is also called a cross-fade. Previously discussed detectors
(color histograms, edge-based) can detect dissolves in several scenarios:

� If two shots have di�erent color distributions, it is possible for a hard cut
detector to identify this, as the distributions will quickly change during
overblending (assuming the blendover is not very slow).

� Assuming two shots have similar color distributions, they can still be iden-
ti�ed given object shapes between frames. In this case, edge-based detec-
tors will detect rapid changes.

� There are also cases where there might be spatial as well as color simi-
larities. However, this is often argued to just be a technical, but not a
semantic transition and thus discarded. An example for this would be the
moon turning into the face of a person.

More re�ned variants of these algorithms and various other approaches towards
shot boundary detection are discussed by Lienhart [42, 43].

2.3 Keyframe Extraction

One merit of keyframe extraction is to only process keyframes instead of all
frames, while not losing too much discriminative information. On a shot level,
it has been shown that using keyframes instead of either regularly sampled
frames or the �rst frame of a shot improves performance [12].

The approach to extract keyframes described in [12] is pretty simple: As-
suming that shot boundaries have already been estimated, all frames within a
shot are clustered (using e.g. k-Means, c.f. Section 2.5.2). The frame that is
closest to each cluster center is then treated as a keyframe.

Since keyframes are extracted within a shot, a possible problem is that they
might repeat themselves in di�erent shots. A simple example might be an
interview, in which each interview partner is shown in turn � as these turns are
treated as di�erent shots, there will be multiple keyframes of the same interview
partners. One way to solve this is to cluster all extracted keyframes on a video
level.
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Figure 2.3: Left: An example image. Middle: A rotated version. Right: A
di�erently illuminated variant. As all three images share the same semantics, a
feature descriptor should not be a�ected by the variations.

2.4 Feature Extraction & Dimensionality Reduc-

tion

While feature extraction is the process of extracting useful features for a video
(or image), dimensionality reduction aims to create low-dimensional represen-
tations of these feature descriptors.

There are a variety of properties a feature descriptor has to ful�ll to be of
use. Some of these properties include (c.f. Figure 2.3):

� Rotation, Scaling, Translation Invariance Descriptors should be in-
variant to rotation, scaling and translation of an image. As an example,
an image which has been rotated by 15 degrees is likely to still express
the same semantics as the original image and correspondingly, the feature
should not be changed by the transformation.

� Illumination Changes Assuming a picture from an object has been
taken under varying lightning conditions or with a di�erent camera, it
is likely that brightness, contrast etc. di�er between images. Still, it is
desirable to capture the similarity, which requires invariance to change in
lightning conditions.

� Perspective Change Pictures that are taken from di�erent angles should
still be considered similar as they share semantics.

While these invariances are required to create descriptive features, 'soft' re-
quirements like computational speed and storage requirements are also of partic-
ular importance. Given that a single video can consist of hundreds of thousands
of frames, feature extraction must be very fast � if the user has to wait for
several minutes for his retrieval results in a search application, productivity is
severely a�ected. Similarly, the description of these hundreds of thousands of
frames have to be stored and processed � thus, feature descriptors can not be
high-dimensional. While the choice of proper feature descriptors is one way to
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achieve these requirements, it is useful to also employ dimensionality reduction
techniques. These techniques reduce high-dimensional data into fewer dimen-
sions, while maintaining as much of the original information as possible.

As feature extraction and dimensionality reduction are highly intertwined
and in the focus of this thesis, they will be explained in Chapter 3. Topic
models, which are a speci�c technique for dimensionality reduction and the key
part of this thesis, will be thoroughly discussed in Chapter 4.

2.5 Statistical Modeling

To achieve the goals of CBVR, the extracted features are normally used to derive
a statistical model. For example, to �nd videos that are similar to a query video,
the system needs to build a model containing information about all videos in
the database. This section will introduce some possible target applications of
statistical modeling and present one way to solve each problem in more detail.

2.5.1 Classi�cation

One scenario in supervised machine learning is the task of classi�cation. Given
a training set with associated category labels, the system is supposed to derive
a model which will be able to infer labels for new data.

A typical example are spam �lters � in a training step, the system is shown
some emails, and each of the emails is either marked as 'spam' or 'no spam'.
After learning to separate these emails, the system should predict for new,
unseen emails whether or not they are spam.

A state-of-the-art method to tackle the problem of classi�cation is called
Support Vector Machine (SVM), which will be explained in the following para-
graph.

Support Vector Machines When formalizing the binary classi�cation task
with features xi and associated labels yi ± 1, a linear discriminative function
can be de�ned as

f(x) = sign(w ∗ x+ b) (2.1)

The classi�cation will then be correct if

∀i[yi(w ∗ xi + b) > 0]

Accordingly, Support Vector Machines separate the input space with a hy-
perplane, so that geometrically, all data entries from one category are on one
side of the hyperplane and the data from the other category on the other side.
A SVM constructs the hyperplane that maximizes the distance to the closest
data points of the two datasets, and is thus called a maximum-margin classi�er.

Hyperplanes are linear functions, which can be a problem if the dataset is
not linearly dividable. This problem can be circumvented by employing a kernel
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Figure 2.4: Features of two classes in a 2-dimensional space. Left: the brown
lines represent possible SVM hyperplanes, while the green line is the optimal
hyperplane given a max-margin criterion. Right: the categories are not linearly
dividable. The green line represents the optimal hyperplane if no kernel function
is used. The �gures were taken from [25], p. 5 & 11.

function, which projects the input into a higher-dimensional space. An example
of such a Kernel function is the Radial Base Function or RBF-Kernel:

k(x, y) = exp(−||x− y||
2

2σ2
)

In this case, it will become possible to divide the resulting higher-dimensional
space by a linear function (c.f. Equation 2.1).

It has to be noted that training with Support Vector Machines implies a
certain instability in the results, depending on the distribution of training and
test sets. One way to counter this instability is called cross validation: here, the
training set is split up into an actual training and a validation set � this is re-
peated several times, before the best trained model (averaged over all validation
sets) is taken. While crossvalidation can improve results, it has the drawback
of increased computation time.

2.5.2 Clustering

In the context of machine learning, clustering is the task of grouping items
according to some criterion (e.g. a similarity measure). This is often done by
�nding group centers (called cluster centers) and then associating each item
to its nearest cluster center. A key di�erence to classi�cation is that no label
information is available to help generate a good model, which is why clustering
is also called unsupervised learning.

Considering a mixed set of soccer and swimming videos, a clustering al-
gorithm should split the data in two groups (one for each respective category),
although no class labels for the videos are available. This is in contrast to classi-
�cation, where videos within one region of the feature space would be considered
as soccer, while another region would be considered as swimming.
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Figure 2.5: A simple clustering example with 3 categories (cross, square, circle)
and 3 clusters (red, green, blue). While the clustering performance is good in
general, some misclassi�cations occur, like the blue circle being associated with
the squares.

A di�cult problem in the context of clustering is the choice of the number
of clusters � this decision can either be left to the user (if he wants to cluster
all images of members of his family, he can easily specify how many family
members exist) or be estimated using cluster validity measures such as the
Bayes Information Criterion [61].

A simple algorithm that yields a local optimum as a clustering result is
k-Means, which will now be explained in more detail.

K-Means K-Means is an algorithm introduced by Lloyd [45] in 1982 that
solves the problem of �nding cluster centers (or means) m1, ..,mk, so that the
overall distance (e.g. L2) of all points p1, .., pn to their closest mean mj is
minimal (NN(j) �nds the cluster center of j):

arg
m1,..,mk

min

P∑
j

‖pj −mNN(j)‖ (2.2)

K-Means consists of several steps:

1. Pick k cluster centers (e.g. randomly)

2. Map each point pj to its closest cluster mi (resulting in cluster sets
C1, .., Ck)

3. For each cluster set Ci calculate the mean and choose it as new mi
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4. Go to step (2) as long as at least one pj changes its cluster in step (2)

There are several problems with this algorithm. First of all, it will only �nd
a local maximum instead of a global optimum of Equation 2.2. Due to this, it is
common practice to restart k-Means several times with di�erent initial clusters
and take the best overall result. Another problem lies in the unknown number of
required iterations until k-Means converges to a solution. These reasons make it
infeasible to predict the required computation time, although k-Means performs
quite fast in practice.

While the presented basic k-Means algorithm performs well, several mod-
i�cations exist. An example for this is the so-called k-Means++ [2], which
attempts to pick the initial cluster centers (step 1) in a more intelligent mat-
ter: after the �rst center is randomly chosen, the distance of each point to the
center is calculated and proportionally used as probability to choose this point
as next cluster center, encouraging initial cluster centers to be spread out over
the dataset. Then, distances to their next cluster are recalculated for all points
and the process iterated k times. This is supposed to help avoid local maxima
and lead to better minimum errors, but takes additional time for the selection
of initial clusters. Another approach named MPI-k-Means [19] uses triangle in-
equalities to speed up the individual iterations, resulting in lower computation
times.

2.5.3 Similarity Search

Similarity search is the process of �nding those videos that are similar to a given
query item. In practice, it depends on the application what items are considered
similar � as examples, they might have a similar location in feature space, they
might belong to the same object, or they might be modi�ed versions of the
same video. Ideally, when queried with a video of a soccer team, the system
would return more videos of that soccer team as a result. While it is possible
to compare the query video with each other video within the data set and
return those with minimum distance, this would have a complexity in O(n) and
hence be slow with bigger corpuses. Thus, one problem of similarity search is
�nding a good data structure which minimizes comparisons and accordingly,
computational speed.

One frequently used data structure to minimize the required amount of com-
parisons are kd-trees, which will be explained in more detail in the next para-
graph.

Kd-Trees Kd-trees [8] represent a k-dimensional hyperrectangle that includes
the dataset, which is iteratively subdivided in two subparts. Searching for the
nearest neighbor within the hyperrectangle is then simply a matter of comparing
the query point with the splits (similar to a binary tree) and thus an operation
in O(log(n)). It is important to note that the point lying in the subspace of the
query point does not necessarily have the smallest distance. To ascertain this, a
hypersphere with the minimum found distance is placed around the search node.
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Figure 2.6: An example of an 2-dimensional Kd-tree with 300 points. The �gure
was taken from [9], p. 2.

All subspaces that are intersected by this hypersphere have to be evaluated to
make sure no point in any of the other subparts has a smaller distance. As a lot
of subspaces will be intersected by the hypersphere in high-dimensional spaces,
kd-trees are not very e�cient in those cases. This requirement can be relaxed if
an approximate solution is su�cient. For example, Paredes et al. [56] employ a
parameter ε, so that point p is an 1 + ε-neighbor of q if (with NN(p) being the
nearest neighbor of p):

dist(p, q) < (1 + ε) ∗ dist(p,NN(p))

Such approximations can signi�cantly reduce necessary computation time if
exact solutions are not necessary.
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Chapter 3

Feature Extraction &

Dimensionality Reduction

Feature extraction and dimensionality reduction are highly related to each other,
as the combined goal of the two processing steps is to generate a compact
representation of the content of an image. Dimensionality reduction can be
unnecessary if extracted features are designed to represent an image in a very
low-dimensional vector.

It is important to note that videos might need to be described by a lot of
features, of which in turn each needs a lot of information to be represented.
Thus, if either the number of features or the number of dimensions of feature is
too high, dimensionality reduction can be helpful.

The �rst part of this chapter deals with feature extraction and discusses
texture, shape, color and motion as di�erent basic modalities to achieve good
descriptors. Patch-based image description and feature bags as advanced con-
cepts are then explained. Speci�c algorithms for image descriptors named Color
Layout Descriptors, Motion Window Histograms, Moments and Speeded Up Ro-
bust Features are also explained.

The second part of this chapter will introduce various dimensionality reduc-
tion techniques. In particular, the aggregation of feature histograms as well as
Principal Component Analysis and Restricted Boltzmann Machines are intro-
duced. A speci�c dimensionality reduction technique called topic models will
then be thoroughly explained in Chapter 4, as they are the main focus of this
thesis.

3.1 Feature Extraction

Features have to describe images/videos with as few dimensions as possible,
while still preserving properties of interest. Di�erent modalities to satisfy these
requirements will be explained in this section.
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3.1.1 Texture

According to Tamura et al. [70], textures can be described by six basic features,
namely coarseness, contrast, directionality, line-likeness, regularity and rough-
ness. As the �rst three are highly correlated with the latter, only the former
will be explained:

� Coarseness Coarseness describes the scale at which elements within the
texture are repeated. One way to calculate Coarseness is to compute
intensity averages around each pixel for di�erent window sizes. As it is
intended to capture coarseness in both horizontal and vertical directions,
the averages on opposite sides of the pixel are then subtracted from each
other for the various scales. The idea is that �ne texture is very 'noisy'
and thus the averages will be alike across the image, resulting in low
average di�erences. On the other hand, the average of coarse textures
should vary more across the image. Thus, the value of the scale with the
largest variation is chosen for each pixel and this coarseness indicator then
summed and normalized over all pixels.

� Contrast Contrast is an indicator for the variation of pixel intensities and
can also be calculated using the variance of a pixel intensity histogram: if
half of the pixels in an image are white and the other half are black, the
variance over all pixels (and thus the contrast) will be very high. On the
contrary, if half the pixels are a light gray and the other half a dark gray,
the variance over all pixels will be smaller. The variance is divided by
the kurtosis of the histogram, which is an indicator for the 'peakedness'
of the image, as more peaks also imply more contrast (e.g. a gaussian
distribution will have less contrast than a histogram with two peaks).

� Directionality Directionality expresses the orientation of elements within
a texture. It can be computed by calculating the orientation and strength
of local edges (using e.g. Canny/Sobel [13]). A histogram over all edge
orientations will have a relatively uniform distribution if there is no par-
ticular direction, but will have a large peak in directed images.

For more information on texture descriptors, see e.g. Manjunath et al. [49].

3.1.2 Shape

In general, descriptors that try to catch similar shapes of objects can be clas-
si�ed in two categories (c.f. Figure 3.1). Region-based descriptors consider the
spatial distribution of pixels within an image, while contour-based descriptors
are concerned with the outline of image regions.

Accordingly, either descriptor type might be more suitable depending on
the task: Region-based descriptors are more robust to noise and can capture
properties of disjunct regions, such as the letter 'i', which would be treated as
a single shape - on the opposite, a contour-based descriptor would describe the
base and the dot of the letter as two separate objects.
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Figure 3.1: Shapes which are similar based on regions (rows) and contours
(columns). The picture was taken from [11], p.1.

Some basic properties for shape descriptors are (for a more detailed survey
of shape analysis, c.f. Lonaric [46]):

� Area The number of pixels within the object.

� Axes of Orientation The major axis is the line that connects the two
points within the object that are the most far away from each other. The
minor axis is perpendicular to the major axis.

� Perimeter The number of pixels that outline the object (i.e. the bound-
ary).

� Compactness Indicates the ratio over which the object spreads out, de-

�ned as perimeter2

area .

� Moments Weighted averages over pixel intensities and (for grayscale im-
ages) de�ned as:

Mij =
∑
x,y

xiyjp(x, y)

Two examples are M00, which is the sum of all pixel values within the
image and (M10

M00
, M01
M00

) as the centroids (x, y). A set of 7 moments that
are invariant to translation, rotation and scaling were proposed in 1962
by Hu [36].

3.1.3 Color

Color histograms are a simple and frequently used image descriptor. The color
space (e.g. RGB) is divided into several bins. Assuming 3 bins per color channel,
this would result in a total of 3 ∗ 3 ∗ 3 = 27 bins. Then, a loop over each pixel
within the image �nds the corresponding bin per pixel and increases its counter
by one. This histogram can either be treated as a descriptor or processed further
(e.g. to �nd the dominant color of an image).

While color histograms are very simple and fast to calculate, they are still
pretty high-dimensional even with a very coarse quantization. Also, color sim-
ilarity across bins can not be captured � this means that very similar colors
might still end up in completely di�erent bins.
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Figure 3.2: A picture and its corresponding color histogram. The
visualization was generated using Color Inspector 3D, available at
http://rsb.info.nih.gov/ij/plugins/color-inspector.html (05/05/09).

3.1.3.1 Color Layout Descriptor

Color Layout Descriptors (CLD) were introduced in 2001 as part of MPEG-
7 [39]. CLD achieves the description of images with only 12 bytes through 4
steps:

1. The image is subdivided in 8x8 blocks of size W/8 * H/8.

2. A single dominant color for each block is selected by averaging colors
within the block.

3. The 8x8 colors are converted in the Y CbCr color space and a discrete
cosine transform (DCT) is performed for each component.

4. The �rst 6 DCT coe�cients for luminance as well as 3 coe�cients per
chrominance channel are taken to form the �nal 12-dimensional image
descriptor. The 6-3-3-distribution was empirically evaluated [39] as deliv-
ering the best tradeo� of descriptor size vs. accuracy.

3.1.4 Motion

Motion is a feature exclusively available to videos. Called 'optical �ow' [6], it
is described as the di�erence of a pixel position from one frame to the next � if
pt(x, y) = pt+1(x + δx, y + δy), then the motion vector is described as (δx, δy)
(c.f. Figure 3.3). This raw motion information can then be processed in several
ways.

Global Motion Global Motion is caused by camera movement and can be
used in several scenarios. For instance, if a camera zooms in on an object, this
might indicate an importance of that object.
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Figure 3.3: The middle picture shows the optical �ow that leads from the left
to the right picture. The optical �ow was generated by the algorithm described
in McCane et al. [51], available at http://of-eval.sourceforge.net/ (05/04/09).

One way to estimate global motion are a�ne motion models, where the
movement (δx, δy) of a pixel (x, y) is described by (c.f. [37]):

δx = a1 + a2 ∗ x+ a3 ∗ y
δy = a4 + a5 ∗ x+ a6 ∗ y

Assuming constant brightness of pixels and the unknown parameters A =
(a1, ..., a6) are global, six constraints introduced by di�erent pixels would be
su�cient to calculate A. In practice, all pixel constraints for an image are
combined to minimize the error. The parameters can then be estimated using
e.g. least square estimation.

Local Motion Assuming that global motion has been estimated, it is easy to
recover the motion of local objects. Given the original motion vector V and the
global motion G, the local motion L simply is

L = V −G

Local motion can be used for a variety of applications, an obvious one being
object tracking.

3.1.4.1 Motion Window Histograms

Motion window histograms intend to capture general frame motion in frames.
To achieve this, the frame is split into 4 ∗ 3 subregions, and for each subregion
all motion blocks over all frames analyzed. As motion is quantized into one of
seven bins (representing some negative motion, a lot of positive motion etc.)
in both X- and Y-direction, each motion block will be assigned to one of 49
bins. The results of each motion block are aggregated into a histogram, thus
describing each subregion by a 49-dimensional descriptor. To describe the whole
video, all subregions are then concatenated, resulting in a total video descriptor
of 588 dimensions.

To be more precise, the algorithm for describing a video looks like this:
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1. For each 4 ∗ 3-subregion:

(a) For each frame and each motion block within that subregion:

i. Quantize the block into one of 7∗7 bins (given (dx, dy)), resulting
in a 49-dimensional vector with one non-zero entry

(b) Sum up these entries in a subregion-wide histogram

2. Concatenate the 12 subregion histograms, resulting in a video 588-dimensional
vector

3.1.4.2 Moments

Moments express general information about how much motion is happening in
frame regions over the whole video. To do this, several steps are required:

1. For each motion block B of the video:

(a) For each frame F of the video:

i. Calculate the amount of motion di�erence in that block:

DBF =
√
δx(BF )2 + δy(BF )2

(b) Calculate the mean over all motion di�erences of that frame:

Mean(B) =
1

|Frames|
∑
F

DBF

(c) Calculate the variance over all motion di�erences of that frame:

V ar(B) =
1

|Frames|
∑
F

(DBF −Mean(B))2

(d) Quantize both mean and variance into one of 6 bins. The ranges for
each bin are

Bin Means Range Variance Range
0 0 0
1 0.5 - 1 0.5 - 1
2 1 - 2 1 - 5
3 2 - 3 5 - 10
4 3 - 4 10 - 20
5 4 - 5 20 - 40
6 5 + 40 +

(e) Add one to the corresponding entry of a video histogram with 6 ∗ 6
dimensions.

This results in a 36-dimensional video motion descriptor. In the case of
YouTube videos with a resolution of 320 ∗ 240 and thus 20 ∗ 15 motion blocks,
the descriptor has a total of 300 entries in the histogram.
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3.1.5 Patch-Based Image Description

Global image constructors (like color histograms) can be computed quickly and
describe the whole image in very few dimensions. The problem is that they are
potentially unable to describe various changes of an image. As an example, an
image of the ei�el tower might be partially occluded or cluttered with humans,
but the observer will still regard it as a picture of the ei�el tower. Similarly, scale
changes of objects within an image are not captured by global image descriptors:
a miniature model of the ei�el tower standing on a table will not be regarded
as being the actual ei�el tower. For these reasons, it is desirable to describe
speci�c image regions in detail.

This is where patchbased image description �ts in [64]. The idea is to �nd
discriminative regions (like corners or blobs) within an image and describe them
in great detail (c.f. Figure 3.4 for some examples of detected interest points
within images). Thus, patch-based image description consists of two compo-
nents: a feature detector that �nds interesting regions and a feature descriptor
which captures the properties of these regions.

Depending on the detector, up to thousands of interest points within an
image can be found. The descriptor might then describe each of them in hun-
dreds of dimensions, resulting in a very high-dimensional overall representation.
Thus, a third processing step called 'bag of visual words' is used to reduce the
number of dimensions, which will be thoroughly explained in Section 3.1.6.

In the �rst subsection, several interest point detectors will be explained. The
next subsection will then introduce di�erent interest point descriptors, before
the last subsection will discuss a combination of feature detector & descriptor
called Speeded Up Robust Features in detail.

3.1.5.1 Interest Point Detectors

Interest point detectors need to �nd 'interesting' regions of an image � as an
example, regions with rapid changes in intensity might be interesting and thus
should be described in more detail by a feature descriptor. A good feature
detector is able to �nd the most interesting regions of an image while being fast
to compute. Three di�erent interest point detectors called Dense Grid Over
Several Scales, Laplacian of Gaussian (LoG) and an approximation of the latter
called di�erence of gaussians (DoG) will now be introduced in more detail.

Dense Grid Over Several Scales A very simple approach to �nd interest
points is to regularly sample over the image. With a sampling step of K pixels
and an image of size M ∗N , this would result in M

K ∗
N
K interest points. Note

that the size of the described region of interest can di�er from the sampling
step. Since the size of possible regions of interest is unknown, it might thus be
preferable to do the sampling on di�erent scales.

Regular sampling can give good results, as a lot of interest points can be
generated. In [31], regular sampling outperforms other feature detectors in-
cluding Di�erence of Gaussians (DoG), which will be explained later. The
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Figure 3.4: Laplacian of Gaussian (LoG) used for interest point detection. Left:
The original colored images. Right: The detected interest points, indicated by
red circles. The �gure was taken from [53], p.6-7.
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reason for this is that regular sampling generates a lot more interest points
than other detectors (in the case of [31], regular sampling yielded 5250 interest
points per image, whereas DoG averaged 550 points). The obvious drawbacks
of this high-dimensional image description are increased computation time and
memory requirements in the feature description step.

Laplacian of Gaussian The Laplacian of Gaussian (LoG), also known as
Marr-Hildreth-Operator after its inventors Marr and Hildreth [50], aims at �nd-
ing image blobs that contain rapid intensity changes. With p(x, y) being the
pixel value, the Laplacian is de�ned as:

L(x, y) =
δ2p(x, y)
δx2

+
δ2p(x, y)
δy2

and can be approximated using a convolution �lter, e.g. 0 −1 0
−1 4 −1
0 −1 0


As this is very sensitive to noise, the image is usually �rst smoothed with a

Gaussian �lter:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

By combining the two �lters, the LoG has the form

LoG(x, y) = − 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2

This will yield large positive/negative values for dark/bright blobs. These
extrema can then be treated as interest point centers. As σ de�nes the �lter size
and thus the scale of the investigated potential interest region, using di�erent
σ ensures scale invariance. Some examples can be found in Figure 3.4.

Di�erence of Gaussians The LoG �lter can be approximated using a
Di�erence of Gaussians (DoG). This is done by using two di�erent sized gaussian
�lters on an image and subtracting them. The �lter then looks as follows:

DoG(x, y) ≡ Gσ1 −Gσ2 =
1√
2π

(
1
σ1
e
− x

2+y2

2σ2
1 − 1

σ2
e
− x

2+y2

2σ2
2

)

3.1.5.2 Interest Point Descriptors

Feature descriptors need to ful�ll the properties described in Section 2.4. While
a variety of feature descriptors exist, Mikolajczyk and Schmid [52] identify them
into three main categories:
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Distribution-Based Descriptors These descriptors categorize an interest
region by a histograms. An example of this is the Scale Invariant Feature
Transform (SIFT) [47], that describes a region by a 3D histogram of gradient
locations and orientations over 4 ∗ 4 subregions. A variant of this is PCA-
SIFT [40], which samples over 39∗39 locations and reduces the resulting feature
vector using PCA. Another example is Shape Context [7], which is based on
edges extracted by Canny [13] and creates a 3D histogram of edge point locations
and orientations.

Frequency-Based Descriptors Describing an image in the frequency do-
main using a fourier transform is also a viable technique. The main problem is
that the spatial relation between pixels is not converted into the frequency space.
This limitation can be addressed with the Gabor transform [23]. However, a
large amount of Gabor �lters is needed to capture frequency and orientation
changes, resulting in a high-dimensional descriptor.

Di�erential Techniques These methods rely on derivatives of image regions,
up to a particular order. Steerable �lters [22] are one example of these methods:
based on the properties of local derivatives, they steer derivatives in a speci�c
direction to achieve rotation invariance. The derivation is approximated by
convolving the image region with gaussian derivatives.

These are just some examples how image descriptors can be created. Mikola-
jczyk and Schmid [52] compared several descriptors and found that SIFT and
its variations performed best. The following section will now thoroughly explain
Speeded Up Robust Features (SURF), which are a more recently developed de-
scriptor that is said to perform similar to SIFT while being less computationally
expensive [5].

3.1.5.3 Speeded Up Robust Features

SURF was originally introduced in 2006 by Bay et al. [5] and consist of both a
feature detector and descriptor, which can share intermediate results to increase
speed. Both heavily use integral images (introduced by Viola and Jones [75]),
which represent the sum of all pixel values from the origin to the point (x, y):

IΣ(x, y) =
x∑
i=0

y∑
j=0

p(i, j)

Feature Detector SURF tries to detects blob-like structures within an image
and expands on the concepts of DoG (c.f. Section 3.1.5.1). It uses the determi-
nant of the Hessian Matrix as a blob detector, with the Hessian Matrix de�ned
as
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Figure 3.5: With integral images, only three additions are needed to calculate
the sum of intensities within an image region. The �gure was taken from [5], p.
3

Figure 3.6: SURF interest point detection: the �rst two images show second
order derivatives, while the latter are the approximations used by SURF. The
�gure was taken from [5], p. 3.

Hessian(x, σ) =
(
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

)
Lab is the convolution of the Gaussian second order derivative of scale σ with

the image at point (a, b). Unlike LoG, which actually calculates those Gaussian
second order derivatives, SURF approximates them with the help of box �lters
(c.f. Figure 3.6). These can be calculated very quickly (and on di�erent scales)
trough integral images, as the sum of intensities within a box can be calculated
with only 3 additions (c.f. Figure 3.5).

The approximation of the determinant yields

det(Hessianapprox) = DxxDyy − (wDxy)2

with Dab being the respective Gaussian approximations in x- and y-directions
and w a �xed constant (roughly 0.9). Interest points are then detected by simply
searching for local maxima of the approximated determinant within the image.

Note that it is important to search for interest points at di�erent scales.
Detectors like LoG do this by iteratively applying a gaussian �lter to the original
image and performing interest point detection at every 'level of blur'. With the
help of the integral images, it is possible to perform interest point detection at
di�erent scales without this smoothing step.
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Feature Descriptor In the case of SURF, feature description consists of two
steps. The �rst step is optional, but can be used to achieve rotation invariance
and involves �nding the main patch orientation. The description of this step will
be omitted as Bay et al. [5] report that a rotation invariance of about +/-15° can
be achieved without applying it.

The second step consists of the actual description of the interest region.
To do this, the region is �rst subdivided into 4 ∗ 4 smaller sub-regions. For
each subregion, the Haar wavelets in both horizontal and vertical direction are
calculated. Note that a simple Haar wavelet can be de�ned as the di�erence
of pixel sums within a rectangle, and can thus be calculated with the help of
integral images. The responses in both directions as well as their absolute values
are summed up, resulting in a 4-dimensional descriptor (dx, dy, |dx|, |dy|) of the
subregion. Concatenating all subregion descriptors leads to a patch description
vector of 64 dimensions. An alternative version of SURF splits dx and |dx| in
separate values for dy < 0 and dy ≥ 0. This holds true for dy and |dy| as well,
generating 8 values per region and thus 128 dimensions in total. By normalizing
this vector, it becomes robust to both illumination di�erences and contrast.

3.1.6 Feature Bags

As indicated, feature detectors can �nd up to thousands of interest points per
video frame, which in turn can be represented by hundreds of dimensions. As
an example, the SURF detector detected 150-350 interest points per frame for
each video of size 320 ∗ 240, with each interest point being described by 128
dimensions.

To circumvent this very high-dimensional image description, an approach
called bag of visual words has been introduced [64]. This approach will �rst be
explained for patches. Afterwards, it will be adapted to motion features and
frames.

Bag Of Visual Words While hundreds of interesting patches are given per
image, a lot of them are very similar in nature. Figure 3.8 is one example for
this: while the 2 objects are very di�erent, they are in fact made up of the same
two patches (indicated by the red respectively blue color). Another example is
a rectangle, which (assuming rotation invariance) can either be described by 4
simple lines ('|'), or by 4 patches describing the corners ('L').

Thus, one way to achieve a discrete, low-dimensional representation of an
image is to cluster similar patches and then store the cluster sizes in a histogram,
instead of the original patches.

To elaborate on this, imagine a 'codebook ' which containsK typical represen-
tatives of interest points. Each interest point will then be mapped to its nearest
representative and the total number of matches for this representative will be
counted in a K-dimensional histogram (c.f. Figure 3.9). One way to generate
this codebook is by formulating the problem of choosing good representatives
as a clustering problem over interest points in a training set. This clustering
problem can be solved by algorithms like k-Means (c.f. Section 2.5.2), where
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Figure 3.7: The process of creating bag of visual words histograms. First, inter-
est points within an image are detected. Second, a codebook of visual words is
created using a clustering algorithm. Given the codebook, each interest point
is assigned to its closest mean. Finally, the number of times a mean was chosen
is counted in a histogram. The �gure was taken from [78], p. 2

Figure 3.8: Figures of a wave and a circle, which are made up of the same
(red respectively blue) patches. This is an example for the similarity of image
patches.
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Figure 3.9: Three di�erent examples for patches that were matched to the same
codebook entry. The �gure was taken from [58], p. 3

the resulting means will be considered representatives of the training set for the
codebook. For a visualization of the process, see Figure 3.7.

The codebook can be seen as a vocabulary, where each mean represents a
(visual) word. The term 'bag of visual words' (BoVW) stems from this analogy,
with the 'bag' relating to the fact that spatial information between patches is
discarded (e.g. the fact where a patch is located within an image is neglected).

The result is a K-dimensional histogram which describes the whole image,
instead of hundreds of single patches which are each described by multiple di-
mensions. Note that K has to be su�ciently high to achieve a discriminative
representation of the image, and may thus still have thousands of dimensions.

Bag Of Frames The bag of frames-descriptor (BoF) extends the BoVW-
analogy to a video level: unlike before, whole frames are treated as words.
Thus, a video is described as a histogram over representative frames.

In particular, BoF uses all BoVW-histograms for each frame as input to
train a codebook with K frame means. Then, all BoVW-histograms are quan-
tized over their respective nearest frame means. This results in a global video
descriptor of size K.

Bag Of Motion The bag of motion-approach is similar to the bag of visual
words and bag of frames in the sense that all methods quantize occurrences
of features into a histogram using a codebook. The di�erence is that, in the
context of bag of motion, the input features are patches of motion di�erences
(dx, dy). Moreover, the number of words within each frame is �xed, as a sliding
window of 4 ∗ 3 blocks is used. This results in 221 features per frame of size
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320 ∗ 240, where each feature has 24 dimensions. Once again, these features are
then used to train a K-sized codebook, before word mappings are counted into
a K-dimensional histogram.

3.2 Dimensionality Reduction

Obtaining low-dimensional image descriptors is a prerequisite to enable further
video processing on a large scale. Thus, dimensionality reduction is a key step
in the CBVR pipeline and a key part of this thesis.

There are two main ways to achieve dimensionality reduction without losing
too much information: the �rst is to �nd those dimensions that are noisy and
thus do not add any discriminative power to the feature descriptor. The second
way is to identify highly correlated dimensions, as they are providing redundant
information. Those dimensions that provide noisy or redundant information
can then be ommited without su�ering a performance loss regarding descriptive
power.

This section will introduce three di�erent means of dimensionality reduction,
namely Principal Component Analysis, Restricted Boltzmann machines and the
aggregation of feature histograms. Another technique which can be used for
dimensionality reduction named topic models will be discussed in more detail
in Chapter 4.

3.2.1 Aggregating Feature Histograms

One simple way to reduce the dimensionality of descriptors is to aggregate their
subparts. As an example, consider a video with 100 frames, in which each frame
gets described by a 2000-dimensional histogram. In total, the whole video will
then be described by 200, 000 values. For a feature representation of the whole
video, it might be bene�cial to sum up all individual frame histograms into one
global video histogram. This can decrease the video descriptor size dramatically,
as the whole video can be described by a 2000-dimensional vector. This can also
improve results, as noise will be averaged out over several histograms. Note that
this fusion of vectors is not the same as the bag of frames approach discussed in
Section 3.1.6: there, individual frames are treated as words and thus clustered
and treated as histogram bins. Here, individual patches are still treated as words
� each patch in each frame is treated as one entry in the global histogram, which
will thus yield in a lot more histogram entries than in a BoF approach.

3.2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a method whose underlying statistical
principles were invented in 1901 by Pearson [57]. It transforms an N-dimensional
feature vector into an K-dimensional vector (K � N) by calculating the covari-
ance matrix C on a training set. Then, the K largest eigenvalues of C are
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Figure 3.10: Layout of an Restricted Boltzmann Machine. The �gure was taken
from [33], p. 2.

identi�ed and their corresponding (pairwise orthogonal) eigenvectors used to
project the original data. Basically, PCA can be subsumed in �ve steps:

1. Calculate the means M for all data dimensions and subtract them from
each data point. This e�ectively creates a data set D which has a mean
of zero along every axis.

Dcentered = D −M

2. Calculate the N ∗N -covariance matrix C of Dcentered.

3. Calculate the N ∗N eigenvectors and N eigenvalues of C.

4. Choose the K most signi�cant eigenvalues and put their corresponding
eigenvectors in a feature matrix F .

5. Multiply the transposed of the feature matrix F with the dataset to gain
the compressed data P :

P = FT ∗Dcentered

6. To retrieve the original data set (aside from the loss of information due
to the dimensionality reduction), simply multiply the transformed data P
with FT and add the originally subtracted means back to the data:

D′ = (FT ∗ P ) +M

As F is only a subset of all eigenvectors, an information loss of the (N−K) least
signi�cant dimensions occurs, which means that D′ 6= D. This information loss
is minimized in terms of mean squared error with PCA. For more information
on PCA, see [18, 62].

3.2.3 Restricted Boltzmann Machines

Restricted Boltzmann Machines were introduced in 2006 by Hinton et al. [27,
28, 60]. They are stochastic networks with neuron-like units and consist of one
layer of hidden units and one layer of visible units. Units are not connected
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within each layer, but there is a symmetric connection to all units of the other
layer (c.f. Figure 3.10). As the output for each unit is binary, the probability
that a particular unit si is on is given by (with wij being the connected weights,
bi the bias for unit i):

p(si = 1) =
1

1 + e−bi+
∑
j sjwij

The key idea is that the network will eventually reach a Boltzmann dis-
tribution if all units are updated sequentially in any order. This Boltzmann
distribution describes the probability of an output vector as its 'energy' relative
to all other possible energies:

p(v) =
∑
h

e−E(v,h)∑
u,g e

−E(u,g)

Here, the energy of one state vector which is the joint con�guration of visible
units v and hidden units h is given by:

E(v, h) = −
∑
i∈V

bivi −
∑
j∈H

bjhj −
∑
i,j

vihiwij

Training of the weights wij and biases bi is done by a process called con-
trastive divergence [28], which aims to maximize likelihood. It is also possible to
create a deep network to capture higher-order correlations between input units.
This is done by stacking several RBMs on top of each other, where the visible
output of one layer is treated as input for the next hidden layer [27]. Given a
particular input in the context of dimensionality reduction, the probabilities for
each output node to be active (i.e. p(si = 1)) are stored.
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Chapter 4

Topic Models

In the previous chapter, di�erent techniques for dimensionality reduction like
Principal Component Analysis or Restricted Boltzmann Machines have been
discussed.

This chapter will focus on a speci�c technique that can also be used for
dimensionality reduction, and a family of di�erent methods build on this tech-
nique. Thus, the model and training of three variants called Probabilistic La-
tent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA) and Hidden
Topic Markov Models (HTMM) will be explained. The adaption of these meth-
ods to video content and other work in the �eld will also be discussed.

Topic models originate from the textual domain. They work on a document
collection D, in which each document Di contains Ni words out of an alphabet
W . Their goal is to capture the semantic relations between documents and
words. This is achieved by introducing intermediate latent variables called 'top-
ics'. A document is described as a mixture of topics, which in turn are mixtures
of words. As an example, a newscast transcript might relate to topics like '�-
nancial world crisis', 'soccer game' and 'weather '. In turn, the topic 'soccer '
would be strongly associated with words like 'goal ', 'ball ' and 'referee'.

4.1 Probabilistic Latent Semantic Analysis

PLSA was originally introduced in 1999 by Hofmann [29]. It de�nes a generative
model for sampling the words W1, ..,Wn of a document D given a multinomial
topic mixture P (Z|D) and topics P (W |Z) (c.f. Figure 4.1):

1. For i = 1, .., n:

(a) Sample a topic Zi ∼ P (Z|D)

(b) Sample a word Wi ∼ P (W |Z = Zi)

Thus, the distribution of a word within a document is approximated by a
mixture of latent aspects:
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Figure 4.1: Generative model of PLSA: given a topic mixture of a document Di,
pick a topic Zk and then a word Wj from that corresponding topic distribution.

P (Wj |Di) =
∑
k

P (Wj |Zk)P (Zk|Di) (4.1)

The model is usually �tted to a training corpus using Expectation Maxi-
mization (EM), which will be explained in Section 4.1.1.

Note that PLSA has several interesting properties. Topics help capture
synonymy and polysemy within documents. Synonymy means that di�erent
words imply the same meaning, like the words 'buy ' and 'purchase'. These
words would have a high probability of being associated with the same topic,
as they tend to be used in the same context. Similarly, polysemy implies that
a word might have several meanings, like the word 'football ' implying either
american football or european soccer. Polysemious words have a good chance of
being associated with multiple topics. 'Football ' could have a high probability for
a topic which also includes words like 'quarterback ', 'receiver ' and 'touchdown'
(american football), as well as be made up of words such as 'goalkeeper ', 'striker '
and 'corner kick ' (soccer).

Another interesting remark about PLSA is that it assumes a bag of word
model: essentially, this means that syntactical information between words is
discarded. It is only important how often a word occurs within a document,
not the contextual information. As an example, the probability to generate
the sentence 'the quick brown fox jumps over the lazy dog' in a PLSA model
would be as high as generating any random permutation of it, like 'brown dog
fox jumps lazy over quick the the'.

4.1.1 Model Fitting with Expectation Maximization

To �t a PLSA model to training data, it is desired to approximate the joint
probability of documents and words. Weighted with the document's length,
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this is done by maximizing the log likelihood

L =
N∑
i=1

M∑
j=1

n(Di,Wj) logP (Di,Wj) (4.2)

As it is infeasible to �nd a closed form solution for the maximization of L, a
di�erent approach called Expectation Maximization (EM) is often used. Demp-
ster et al. [17] formalized EM in its generalized form in 1977, which basically
consists of two alternating steps:

� In the expectation step (E-Step), posteriors for the latent variables Z
based on the current parameter estimates are calculated. Using Bayes
rule and Equation 4.1, this results in:

P (Zk|Di,Wj) =
P (Wj |Zk)P (Zk|Di)∑K
l=1 P (Wj |Zl)P (Zl|Di)

(4.3)

� In the maximization step (M-Step), parameters are updated given the ex-
pected complete log-likelihood, which is a lower bound to the log-likelihood
de�ned in Equation 4.2 and depends on the latent posterior estimates from
Equation 4.3:

E[LC ] =
N∑
i=1

M∑
j=1

n(Di,Wj)
K∑
k=1

P (Zk|Di,Wj) log [P (Wj |Zk)P (Zk|Di)]

Using Lagrange multipliers, this leads to the following simpli�ed equations
for estimating the parameters:

P (Wj |Zk) =
∑N
i=1 n(Di,Wj)P (Zk|Di,Wj)∑M

m=1

∑N
i=1 n(Di,Wm)P (Zk|Di,Wm)

P (Zk|Di) =

∑M
j=1 n(Di,Wj)P (Zk|Di,Wj)

n(Di)

Both steps are alternated until either the algorithm converges or an alter-
native termination condition like a maximum number of iterations is met. The
latter is often used to prevent over�tting. For more details, see Hofmann [29].
Note that EM does not guarantee to �nd the global optimum, but will converge
to a local maximum as LC only gives a lower bound of L.

To increase the chance of escaping local maxima, a method called Tem-
pered Expectation Maximization (TEM) can be employed [29]. This annealing
method, which is also likely to reach good results with less iterations than nor-
mal EM, introduces a parameter β in the E-Step:
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Figure 4.2: The generative model of LDA: given a topic mixture for a document
Di, draw a topic Zk and then a corresponding word Wj . The word mixtures for
a topic Zk are given by βZk and determined by a common prior η.

P (Zk|Di,Wj) =
[P (Wj |Zk)P (Zk|Di)]β∑K
l=1 [P (Wj |Zl)P (Zl|Di)]β

The algorithm is then run with β = 1 for T iterations (early stopping).
Afterwards, the performance in each iteration is compared with the previous it-
eration (on held-out data) and β decreased if performance did not improve. This
process continues until decreasing β does not improve results on the held-out
data any further. Aside from helping to escape local maxima and signi�cantly
speeding up the training process, this will also gradually smooth the posterior
probabilities with decreasing β.

4.2 Latent Dirichlet Allocation

A topic model similar to PLSA is called Latent Dirichlet Allocation (LDA).
Introduced in 2003 by Blei et al. [10], LDA models the document distribution
using a Dirichlet prior. Thus, assuming α as parameter for the Dirichlet dis-
tribution and given a prior η that estimates the word-topic-probabilities β (for
each Zj), the generative model for a document is as follows:

1. Sample N ∼ Poisson(ξ) // document length

2. Sample P (Z|D) ∼ Dirichlet(α)
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Figure 4.3: The PLSA model applied to video. Videos correspond to documents,
words to frame patches. In this example, di�erent movement types correspond
to topics. The Figure was taken from [55], p. 5.

3. For word i = 1,..,N :

(a) Sample a topic Zi ∼ P (Z|D)

(b) Sample a word Wi ∼ P (W |Z = Zi, βZi)

Modeling documents with a Dirichlet prior is meant to overcome two �aws
of PLSA: First, the number of parameters to estimate does not increase linearly
with the number of documents in the training set. This is supposed to help
prevent over�tting. Second, it is clear how to assign probabilities to documents
that are not in the training set - in that sense, PLSA is not a generative model
at the document level.

4.3 Topic Models for Videos

Applying PLSA to images is pretty intuitive assuming a bag of visual words-
approach as explained in Section 3.1.6. In this case, local patch descriptors
are quantized over a given codebook, resulting in a histogram with K bins.
The codebook corresponds to the vocabulary W of the textual domain with a
dictionary of size K. Each histogram bin represents a word Wj and thus, the
histograms represent the number of occurences of each word within a document
(the document corresponds to the image). This is possible because spatial in-
formation that gets discarded when patches are put into bins is not important
for the 'bag of words'-model used by PLSA.

Intuitively, a topic is expected to correspond to a semantic meaning. An
example is shown in Figure 4.3, where di�erent topics are supposed to corre-
spond to di�erent types of human movement. Another example is the �eld of
sports broadcast � here, one topic could correspond to soccer, while another
one might be equivalent to basketball content. Note that the granularity of the
semantics can vary: given the �eld of soccer, one topic could correspond to the
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lawn, another one to the ball, others to players from di�erent angles etc. This
representation can be extended to videos in several ways. First, the whole video
can be treated as a document, where all patches from all frames are fused into
one global bag of visual words. The problem with this approach is that temporal
structure is lost and no information about speci�c video parts is maintained.

Another approach is to model each frame as a document with a separate
frame-wise histogram. This results in a large feature of size |frames| ∗ |visual
words|, and an additional fusion of frame information is required for video
representation.

Finally, a video can also be treated as a collection of shot-level documents,
i.e. all frames within a shot are assumed to be semantically connected. Using
such a representation, �ner notions (e.g., certain events in the video), which
cannot be captured by the global video representation, could be preserved while
maintaining a more compact representation than there would be on only the
frame level.

It is important to note that the di�erent representations also have conse-
quences for the creation of the topic model. In the example of a soccer game
with di�erent shots of the �eld and the audience, an analogy between shots
and documents is likely to lead to two topics � one for each the �eld and the
audience. However, if one document corresponds to one video, a single topic
will be mixed and contain both patches of the �eld and the audience.

4.4 Hidden Topic Markov Model

While topic models like PLSA and LDA neglect temporal order within a video
stream, a more appropriate view might be to understand shots as the semantic
units of video. Usually, the content within a shot is heavily semantically related,
while switches of semantics occur at shot boundaries. The Hidden Topic Markov
Model (HTMM) [24] described in the following makes use of this temporal struc-
ture. It models documents as sequences of sentences (which will become shots
in the video scenario). Words within a sentence are assumed to be derived from
the same topic, while topic transitions occur only between sentences. Developed
in 2008 by Gruber et al. [24], the HTMM is based upon LDA.

Each document D consists of sentences S1, .., Sm, and each sentence Sj again

consists of words W j
1 , ..,W

j
|sj |. A topic distribution P (Z|D) is assumed to be

given (which is drawn from a Dirichlet prior with parameter α as in LDA [10]).
Topic transitions are only allowed between sentences, and at the beginning of
each sentence it is decided whether a transition occurs (which happens with
probability ε). Either the topic from the previous sentence is used or a new one
is chosen according to P (Z|D). Each word within the sentence is then sampled
from the chosen topic.

1. Draw P (Z|D) ∼ Dirichlet(α)

2. For j = 1, ..,m: // sample sentences
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Figure 4.4: The generative model of HTMM: given a topic mixture for a docu-
ment Dl (drawn from a Dirichlet prior α), consider each word in the document.
If the word does not start a new sentence (Ψi, depending on the probability
ε), the topic equals the topic of the previous sentence. Otherwise, the topic is
freshly chosen according to the documents topic mixture.

(a) Sample Ψj ∼ Binom(ε)

(b) If (Ψj == 0) set Zj = Zj−1

else Zj ∼ P (Z|D)

(c) For i = 1, .., |sj |:

i. Draw W j
i ∼ P (W |Zj)

The idea is that words within a sentence are semantically connected, so that
enforcing a single topic per sentence leads to a more stable document structure.
The connection of the sentences is modeled using a Hidden Markov Model.
Training of the HTMM is done by Expectation Maximization (c.f. Section
4.1.1) and the forward-backward algorithm [59].

In the case of HTMM, the latent variables are twofold: aside from the topics
Zk, the decision whether a topic transition occurs at a sentence transition Ψj is
also a latent variable. Thus, Expectation Maximization is slightly modi�ed:

� The E-Step is adapted to calculate P (Zm,Ψm|D,W1, . . . ,WM ; θ, β, ε) for
each sentence using the forward-backward algorithm.

� In the M-Step, the parameters P (Z|D) and P (W |Z) (which corresponds
to β in the LDA/HTMM notation) are calculated, as explained in Section
4.1.1. Additionally, the parameter ε also has to be estimated, which serves
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Figure 4.5: A soccer video consisting of three shots, which was analyzed using
PLSA (top) respectively HTMM (bottom). While PLSA yields di�erent topic
associations for di�erent patches within the same shot (indicated by the circle
color of the patch), the HTMM associates a shot (and frames within a shot)
with a single topic and allows topic transitions only at shot transitions.

as prior for the probability of topic transitions and can be calculated using
Lagrange Multipliers(c.f. [24]).

For more details of the training, see Gruber et al. [24].

4.5 Related Work

Topic models have been employed in various works in the image domain. As an
example, Barnard et al. [3] use a multimodal LDA for automatic annotation.
The analogy between the 'bag of words' in the textual domain and 'bag of visual
words' in the image domain has been explored by Sivic et al. [63]. They em-
ployed LDA and PLSA for object discovery in images and reported that both
outperformed previous approaches [21]. Similarly, Quelhas et al. [58] investi-
gated the use of PLSA for scene classi�cation and compared the dimensionality
reduced features to the original BOVW-representation on a small dataset of
9457 images. Both approaches outperformed standard methods like binary hi-
erarchical bayesian classi�ers [73].

Topic models for dimensionality reduction in the image context on larger
data sets has been investigated by Hoerster et al. [33]. They compared PLSA
and LDA with Restricted Boltzmann Machines [60], which can also be em-
ployed for dimensionality reduction. While all three approaches perform simi-
larly, PLSA seems to have a slight edge over both LDA and RBM.

Several extensions to topic models have been proposed to tailor them more
speci�cally to the image domain. One direction is the attempt to integrate the
spatial information of patches within an images. For example, Tirilly et al. [72]
propose to capture the spatial information of patches by projecting them to a
main axis (computed by PCA). This is supposed to introduce structural order,
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shaping the analogy of 'visual sentences'. Liu and Chen [44] also try to use spa-
tial information by integrating correspondence (shape and location of patches).
To be more precise, they give 'rewards' R for corresponding patches and learn
those depending on the topics (P (R|Z)). While this improves performance,
computation time is also increased. Fergus et al. [20] learn object categories
by retrieving images from Google Image Search and use PLSA to �lter noisy
content. Moreover, in order to better capture the position of the objects, they
introduce a latent variable into the PLSA model that describes the centroid,
resulting in invariance to translation and scaling. Hohl et al. [30] enhanced
LSA in the video domain to capture spatial information by modifying the visual
codebook: instead of treating each codebook mean Ci as a visual word, they use
tuples (Ci, Cj) as visual words, hoping to capture the co-occurrence of regions
this way.

Monay and Garcia-Perez [54] argue that, in word-image associations, the
semantic information gained by words is much higher than for images. Thus,
instead of concatenated BOVW+word-features, they propose to �rst train a
PLSA model on the captions and then use the previously computed P (Z|D) to
train a PLSA on the viswords for P (W |Z). This way they enforce the topic
distributions implied by the caption model on the BOVW model.

Hoerster et al. [35] also explored an interesting extension to PLSA where
they model visual words as continuous distributions rather than quantized high-
dimensional descriptors. They argue that this is more natural in the image
domain and show a performance gain of 4% over the normal discretized PLSA
model.

There are only few works that utilize topic models in the video domain for
semantic meaning. Souvannavong et al. [67, 68, 69] explored Latent Semantic
Analysis (LSA) with region-based descriptors in the video domain for tasks
like object retrieval and scene classi�cation. LSA was based on linear algebra
and heavily inspired PLSA. One of its shortcomings was the lack to capture
polysemy, i.e. the possibility of a word to have several meanings. Niebles et
al. [55] used PLSA to model human action categories like walking, running etc.
In their approach, they use spatial-temporal visual words as vocabulary.
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Chapter 5

Experiments

This chapter will describe the experiments that took place within the scope of
this thesis. This includes the setup, results and discussion for each experiment.
There are two main goals for these experiments: the �rst goal is to decide
whether topic models are a good tool for dimensionality reduction in the context
of video content. The second goal is to explore whether exploiting structural
video information on a shot level bene�ts results.

To re�ect these goals, the �rst section will discuss the general test setup,
including the datasets, evaluation measures and third-party software used. The
following section will then aim to answer the question of the �rst goal, namely
if topic models are a good �t to aid in content-based video retrieval. The last
section of this chapter will then incorporate shot structure to decide if structural
information bene�ts system performance.

5.1 Experimental Setup

This section will brie�y discuss the tools used in each step of the CBVR pipeline
(c.f. Figure 5.1).

Preprocessing All experiments are based on the same preprocessing steps:
for each video, the extended SURF (Section 3.1.5.3) detector and descriptor
with 128 dimensions was run on each 10th frame. These features were then
aggregated into a bag-of-viswords histogram (Section 3.1.6) with 2000 entries.
The visual codebook was pre-generated from a bigger, generic dataset consisting
of Youtube videos and was not changed throughout all experiments. Thus, as

a start point, each video was described by |Frames|10 ∗ 2000 (integer) values.

Shot Boundary Detection As cuts and fades make up the majority of tran-
sitions, it seemed to be su�cient to focus on these transition types for shot
boundary detection (Section 2.2). For this task, two programs developed at the
university of Mannheim, Germany by Lienhart [41] were used, which focus on
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Figure 5.1: The general experimental processing pipeline. The �rst step is
to extract features (like SURF) for each video. Patchbased features are then
matched to a codebook, resulting in bag-of-word histograms. These can then
be aggregated to shot-level histograms (if shot boundary information is avail-
able) or video-level histograms. The histograms can then either be directly
used as (potentially) high-dimensional feature vectors or be reduced to a lower
dimension using dimensionality reduction techniques like topic models. Either
way, the resulting features are then used as input for various applications like
classi�cation or similarity search.
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detecting cuts respectively fades. To the best of our knowledge, these are the
only open source implementations available for shot boundary detection.

Feature Extraction Motion window histograms (Section 3.1.4.1), Moments
(Section 3.1.4.2) and Color Layout Descriptors (Section 3.1.3.1) were extracted
using in-house implementations. While there are several variants for SURF
available, the implementation provided by Bay [5] was employed throughout
this thesis.

Codebook Generation & Matching All codebooks for the varying feature
bags were generated using a k-Means variant (Section 2.5.2). While the original
k-Means algorithm is pretty straightforward, it can be speeded up using triangle
inequalities. This variant of k-Means was developed at the Max Planck Institute
in Tübingen, Germany by Gehler [19].

Codebook matching was performed using approximate kd-trees (Section
2.5.3), using an implementation developed at the University of Valencia, Spain
by Paredes et al. [56].

Dimensionality Reduction A variety of dimensionality reduction techniques
were tested. While PLSA(based on Expectation Maximization, Section 4.1) and
PCA (Section 3.2.2) were provided in-house, the Hidden Topic Markov Model,
which was originally developed during an internship with Google, USA by Gru-
ber [24], was adapted from the textual to the video domain. Restricted Boltz-
mann Machines (Section 3.2.3) were tested with the help of the modular toolkit
of data processing, a python toolkit that was originally build by Zito et al. [80]
at the Bernstein Center for Computational Neuroscience, Berlin, Germany.

Statistical Modeling Classi�cation experiments were performed using Sup-
port Vector Machines (Section 2.5.1). In particular, the library libsvm, created
and maintained by Chang et Lin[15] at the National Taiwan University in Taipei,
Taiwan, was used. Unless stated otherwise, an RBF kernel and 5-fold crossval-
idation were employed throughout this work.

For the clustering tasks, the same faster k-Means (Section 2.5.2) variant from
the Max Planck Institute [19] that was also employed for codebook generation
was used.

Finally, the similarity search was implemented by a nearest-neighbor search
in an approximate kd-tree structure (Section 2.5.3), which was the same as used
for the codebook matching [56].

5.1.1 Datasets

In this work, three di�erent video datasets were employed. The �rst dataset
(DS-1) consists of 900 YouTube1 videos, which belong to one of the �ve cate-
gories hiking, ice-skating, library, soccer, talkshow. Each category is made up

1http://www.youtube.com
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out of 150-200 videos, where 50 were put into the test set and the rest used
as training set. This results in a training set size of 650 videos and a test set
size of 250 videos. The videos have an average length of 4 minutes. They were
downloaded from YouTube by searching for the respective category and similar
words. For example, soccer videos were obtained by querying YouTube with
words like 'soccer ' or 'soccer world championship'. Furthermore, to increase
variety within videos, only one video per author was retrieved. Note that the
videos have enormous intra-class variability, since videos are manually tagged
by the author when uploaded. As an example, one video in the hiking category
consisted of a presentation about hiking boots.

The second dataset (DS-2) is also made up of YouTube videos, but with
ten, more di�cult categories (basketball, cats, desert, ei�eltower, helicopter,
riot, sailing, soccer, swimming, tank). In total, it is comprised of 3618 videos,
where 250 videos of each category are in the training set (amounting to a total
training set size of 2500) and the rest in the test set (1118). Note that the
amount of test samples for each category varies, for example there are only 57
videos in the ei�eltower category, whereas the categories riot and sailing have
more than twice as much(c.f. Table 5.1).

To create ground truth on a shot level, DS-2 was also annotated manually
on a keyframe basis, with the keyframes being extracted by the method pro-
posed by Borth et al. [12]. This means that the human evaluator decided for
each keyframe whether or not the associated concept was actually present in the
video. To generalize this keyframe annotation to shot level, shots were only ac-
cepted as 'containing the concept' if all keyframes within that shot were marked
as containing the concepts. If that was not the case, they were discarded.

This resulted in a third dataset (DS-3) where videos were annotated on a
shot level. The training set DS-3B was comprised of 12900 manually annotated
shots (once again, di�ering largely in number of shots per category) and the test
set of 5830 shots. Finally, the training set DS-3A contains all shots extracted
from a video (not only the manually annotated ones). The di�erentiation was
introduced to be able to analyze the impact of noisy data (c.f. Experiment
5.3.4).

5.1.2 Performance Criteria

This section introduces criteria that can measure the quality of CBVR appli-
cations. In particular, precision and recall will be explained as performance
criterion for classi�cation and similarity search, and purity will be introduced
as a way to measure performance of clustering algorithms.

Classi�cation

Common measures to evaluate the performance of classi�cation are precision
and recall [48]. Precision is a measure of how many retrieved documents of a
�xed number of documents are relevant (which means that they belong to the
same category as the query document), and thus de�ned as
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DS-1 (video) DS-2 (video) DS-3 (shots)
Train Test Train Test Train (A) Train (B) Test

hiking 150 50
ice-skating 100 50
library 100 50
talkshow 150 50
soccer 150 50 250 123 14762 2324 1187
basketball 250 113 11211 1901 827
cats 250 109 8935 1884 925
desert 250 100 6662 378 148
ei�eltower 250 57 5751 682 129
helicopter 250 126 4957 546 321
riot 250 131 12576 2140 778
sailing 250 134 8063 647 389
swimming 250 112 11985 1951 905
tank 250 113 5682 447 221
Total 650 250 2500 1118 90854 12900 5830

Table 5.1: The amount of training and test data for the di�erent datasets.

Precision P :=
|relevant documents ∩ retrieved documents|

|retrieved documents|
=

TP

TP + FP

Similarly, recall is a ratio for how many documents are needed to retrieve a
�xed number of document of the relevant class:

Recall R :=
|relevant documents ∩ retrieved documents|

|relevant documents|
=

TP

TP + FN

True positives (TP) are the number of items that were correctly classi�ed
as the relevant label, whereas false positives (FP) are items that, while actually
belonging to a di�erent class, were classi�ed as belonging to the evaluation-
relevant class. Lastly, false negatives (FN) are the number of items that actually
belong to the relevant class, but were associated with a di�erent one.

As precision and recall are highly related to each other (higher recall will
lead to lower precision and vice versa, as it is common to have a lot of good
retrieval results in the beginning, while they are more sparse later; c.f. Figure
5.2), an evaluation measure called average precision (AP) is often used, which
is the integral over the function of precision against recall (δR(i) is the recall
change from i− 1 to i):

Average Precision AP :=
∫ 1

0

P (R)dR =
|Docs.|∑
i=1

P (i)δR(i)
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Figure 5.2: Two functions of precision (Y) given di�erent target recalls (X) in
a classi�cation task. Average precision (AP) is the integral of the function and
commonly used as evaluation criterion. While the soccer function appears to
be nearly optimal (retrieving only correct results in the beginning), a curve like
the red one is more often encountered in practice: here, the �rst results are also
correct, but degrade in a more unstable way.

Clustering

Evaluating clustering performance can be approached from either an informa-
tion theoretical (with measures such as mutual information or conditional en-
tropy) or a statistical point of view. In this work, the latter approach is em-
ployed, represented by the purity criterion.

Purity [79] is an evaluation criterion which counts the number of samples per
category k in each cluster Ci. The category Ci,k with the maximum samples is
divided by the total number of samples in a cluster and (with adjusted weights)
summed up over all clusters Ci:

purity(Ci) =
1
|Ci|

max
k

(|Ci,k|)

purity(C) =
∑
j

|Cj |
|D|

purity(Cj)

Note that purity will get higher with more clusters and peak at 1.0 in case
every shot gets it own cluster assigned. Thus, it is not a fair measure to evaluate
the best number of clusters. However, it is an intuitive approach that is fair for
comparing di�erent methods on the same amount of clusters. Keep in mind that
the clustering process itself does not utilize any labeling information, but purity
as an performance criterion then uses these labels to evaluate cluster quality.
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Similarity Search

A simple way to evaluate performance in the context of similarity search is to
pick a �xed number K, and retrieve the �rst K results of the evaluation engine.
The performance then equals the precision of classi�cation tasks:

P (K) =
TP

TP + FP

Both recall and average precision (up to a �xed number of retrieved results)
can be speci�ed similarly.

5.2 Video Classi�cation

This series of experiments will deal with the task of video classi�cation [65]:
the system learns to recognize unseen videos and gives information about the
content. As an example, it should be able to di�erentiate between soccer and
swimming videos.

The �rst step to achieve this is the choice of good feature descriptors, which
will be investigated in the �rst experiment. Visual descriptors, which have been
widely investigated for the image domain, will be included, but the experiment
will focus more on the video-speci�c motion features. As good feature descrip-
tors are often high-dimensional, di�erent dimensionality reduction techniques
like PCA and topic models will then be investigated. As it has been previously
illustrated that PLSA and LDA perform comparably [33, 63], this thesis will
focus on PLSA as representative for topic models in all experiments. The third
experiment will then explore the incurred performance loss given di�erent target
compression rates. The last experiment in that series analyzes the performance
gain induced by combining di�erent features (like BoVW and MWH), when
maintaining the same overall target compression ratio.

5.2.1 Comparing Features

The �rst series of experiments was concerned with choosing good initial features
for video retrieval. An overview of features has been given in Section 3.1. As
the emphasis is on video content, only one descriptor that is also applicable
to images was analyzed. Apart from that, several motion-related features were
evaluated.

In particular, the focus lay on SURF as a patch-based image descriptor
and it was quantized over a codebook with 2000 entries into a 'bag of visual
words'-histogram. This was compared with the 'bag of frames'-approach, which
quantizes over those BoVW-histograms of all video frames using a codebook
with 500 entries. These 500-dimensional histograms represents the number of
times a frame occurs within a video and is only available on a video level. A
motion-based approach called 'bag of motion' works in a similar fashion: here,
motion descriptors within each frame are quantized over a codebook of size 100.
Motion window histograms put single block windows into �xed bins and sums
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Figure 5.3: Examples of videos that get classi�ed correctly as soccer (upper
4 rows) or misclassi�ed (lower 4 rows) using pure BOVW descriptors. Each
video is represented by a row of 6 regularly sampled frames. It is interesting
to note that the wrongly classi�ed videos seem to not belong as strictly to the
concept of soccer as the correctly classi�ed: the �rst and third wrong video
show a person doing tricks with a ball, the second one is starring soccer players
in an advertisement, and the last one is a video of an interview about training
methods. Thus, the system seems to have learned a very strict, but nevertheless
correct de�nition of soccer.
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Feature # Dim. MAP
Bag of visual words (BoVW) 2000 0.911173

Bag of frames (BoF) 500 0.703738
Bag of motion (BoM) 100 0.502281
Moments 36 0.375507
Motion window histograms (MWH) 588 0.668701
BoVW + MWH (early fusion) 2588 0.872751
BoVW + MWH (late fusion) 2588 0.926052

BoVW + BoF(late fusion) 2100 0.918476
BoVW + MWH + BoF (late fusion) 2688 0.932854

Table 5.2: Mean average precision for di�erent single features and their fused
derivations.

those bins over the whole image. Finally, moments capture the general motion
activity in each block over the whole video and quantize the results for each
block into a 36-dimensional descriptor.

The experiments were concluded on DS-1 on a per-video level. The bene�ts
of early and late fusion were also investigated, which is the combination of
di�erent features. In this context, early fusion means that several features
are concatenated and the (larger) total feature vector then used for machine
learning. A potential drawback for early fusion is that features can not be as
easily normalized, e.g. features with di�erent machine learning performances
are weighted equally. Late fusion implies running machine learning techniques
on each feature separately and fusing the outputs afterwards. The drawback is
that several models for the di�erent features have to be kept and that fusion of
the scores of each model is a nontrivial problem.

Results for this experiment can be found in Table 5.2. Some examples for
correctly and wrongly misclassi�ed samples can be found in Figure 5.3. It turns
out that the initial BoVW approach with SURF features already provides an
excellent performance for this dataset, whereas the more time-consuming BoF
approach lacks expressive power. Regarding motion features, the motion window
histograms performs best.

Performing an early fusion of BoVW and MWH (87.2%) leads to worse
results than plain BoVW (91.1%). This can be explained by the fact that
features were just concatenated, but not weighted in the process. However, a late
weighted fusion works well and improves overall performance. It is interesting to
note that, while the plain BoF model (70.3%) performs better than plain MWH
(66.8%), fusing both with BoVW works better for MWH (92.6%) than BoF
(91.8%). This can be explained by considering the properties both descriptors
are based on: BoF and BoVW both utilize visual information, which probably
makes the combination partially redundant. On the other hand, MWH is a
motion feature, which is not exploited by BoVW.

As expected, fusing BoVW with both MHW and BoF into one model leads
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Category BoVW 2000 PCA PLSA RBM
basketball 0.812526 0.787871 0.767004 0.726583
cats 0.728590 0.673048 0.707340 0.543335
desert 0.626539 0.402013 0.494892 0.457253
ei�eltower 0.771503 0.455239 0.659240 0.529383
helicopter 0.546355 0.331466 0.384607 0.328899
riot 0.708391 0.619775 0.716111 0.556713
sailing 0.810469 0.632837 0.745042 0.598603
soccer 0.837547 0.771523 0.831563 0.768688
swimming 0.748331 0.671698 0.706466 0.546396
tank 0.555097 0.343956 0.470825 0.341197
Overall 0.714535 0.568943 0.648309 0.539705

Table 5.3: The average precision (AP) of the di�erent categories of DS-2 for
di�erent dimensionality reduction techniques (PCA, PLSA, RBM) and a 2000-
dimensional control run.

to the best results. This indicates that, in general, more and diverse features
are always better. The drawback is that having more features automatically
leads to larger input data. Thus, there is a trade-o� between complexity and
performance. This makes it desirable to either exploit low-dimensional feature
descriptors or analyze dimensionality reduction techniques which reduce feature
descriptors to fewer dimensions without losing much information. This way, it
would be possible to fuse a variety of di�erent features (resulting in better
machine learning performance) while maintaining compact descriptors.

5.2.2 Comparing Dimensionality Reduction Techniques

As indicated by the previous experiment, it is desirable to include a variety of
features while maintaining a low-dimensional, compact representation.

To �gure out which DR technique works best the original 2000-dimensional
BoVW histograms was reduced to 50 values by various means. The commonly
known Principal Component Analysis (reduced to the �rst 50 principal compo-
nents), PLSA as representative for topic models (reduced to 50 latent topics)
and Restricted Boltzmann Machines (with 50 output nodes) were tested. The
50-dimensional features were then used for a classi�cation task on the dataset
DS-2.

As illustrated in Table 5.3, PLSA comes closest to the non-reduced perfor-
mance with a mean average precision (MAP) of 64.8%. PCA has a MAP of
56.8%, with RBM trailing at 53.9%. This is a bigger di�erence than reported
in the experiments performed in [34], where PLSA only slightly outperformed
RBM. Nevertheless, both experiments are good indicators that topic models are
indeed a good approach to e�ectively compress semantic information of videos.
Therefore, the performance of topic models will be further investigated in the
following experiments.
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Figure 5.4: Some example topics that developed while training a PLSA on DS-1.
It can be seen that the topics capture the properties of particular categories:
the uppper left topic captures an ice-skating rink, the upper right topic the
side fence of a soccer �eld. The lower left topic consists mostly of sky, and the
lower right topic corresponds to brushwood, which can both be attributed to
the hiking category.
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Figure 5.5: The mean average precision given di�erent topic amounts for a
PLSA model.

To get an idea of the visual nature of topics, Figure 5.4 shows some patches
from sample topics that developed while training a PLSA on DS-1.

5.2.3 Di�erent Topic Sizes

As indicated by the previous experiment, topic models seem to be very suitable
for the task of semantic video compression. As the goal in semantic compression
is to make the descriptor dimension as small as possible without losing too much
information, it is worth to investigate the performance behaviour of topic models
with varying number of topics. Thus, PLSA models were trained for DS-2 with
di�erent topic values, ranging from 10, 20, 30, ..., 200. The resulting model was
then applied to both training and test sets, and the resulting video descriptors
were used as input for a classi�cation task.

As can be seen in Figure 5.5, it is important to provide enough latent topics
for the data set. If that is not the case, performance will su�er, which explains
the steep curve until around 90 topics. From there on, the performance is
increasing more and more slowly, with the best value in the test set being 69.7%
for 190 topics. This is less than 2% worse than the classi�cation performance
on the original, 2000-dimensional BoVW-histograms (71.4% ) and thus very
impressive considering that storage requirements are smaller by a factor of 10.5.
Given target reduction factors of 20 and 40 (and thus 100 respectively 50 topics),
still respectable performances of 67.5% and 64.8% are achieved.

These results indicate the trade-o� between performance and storage re-
quirements and hint at the minimum amount of required topics for this dataset.
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Figure 5.6: Mean average precision given di�erent topic sizes for various features.
Compared are plain bovw features, plain motion features and a fusion of both
(with a �xed amount of 15 topics for the motion feature).

5.2.4 Fusing Dimensionality Reduced Features

This experiment investigates the combination of several feature descriptors in
the context of topic models. As seen in Experiment 5.2.1, it is bene�cial to
combine di�erent features for a performance increase. However, the problem of
that approach is that the resulting feature dimensionalities will become larger
and larger the more features are added. As topic models are a good way to
limit dimensionality size, it is interesting to �nd out how features behave if
they are reduced to small dimensions and then fused together, to reach a �xed
feature-wide dimensionality size. Hoerster and Lienhart [32] also report that
performing a late fusion on topic models instead of an early fusion gives better
results, but did not investigate �xed-size target dimensionalities with di�erent
numbers of topics for each feature type.

Thus, the behaviour of both BOVW-histograms and MWH if they are re-
duced to K = 10, 15, 20, . . . , 100 topics using PLSA is analyzed. The results
from all classi�ers are then merged pair-wise using late fusion, reaching up to a
total of 200 topics in case of 100 topics for both PLSA-BOVW and PLSA-MWH.

An exemplary performance for a �xed number of 15 topics for the PLSA-
MWH plus x topics for PLSA-BOVW can be seen in Figure 5.6. The resulting
total amount of topics (15 + x) is compared to pure PLSA-BOVW and PLSA-
MWH with the respective number of topics. As expected from the results in
Section 5.2.1, the pure PLSA-MWH performs worst. However, it can be seen
that the fused model regularly outperforms the pure PLSA-BOVW, albeit only
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Figure 5.7: Mean average precision (Y) against the fusion of PLSA-BOVW
features (X) and PLSA-MWH features (Z). The feature axes indicate the amount
of topics used for a single feature.
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by a small margin (the maximum absolute di�erence being 3.3% at a total
45 topics and 2.7% for 90 topics respectively). This is especially remarkable
considering that the PLSA-MWH is not a very strong feature on its own, which
leads to the conclusion that fusing two stronger independent features will give
even stronger performance increases.

The complete results of the di�erent fusions can be found in Figure 5.7.
They indicate that it is generally a good idea to give more topics to the 'better'
features. The purple region is a good example of this: here, only 10 topics for
PLSA-BOVW are used, while the rest is added by PLSA-MWH. Note that, at
this high level of performance for classi�cation, it does not help in general to
allow a lot of topics for all features � using all topics (100 for each PLSA-BOVW
and PLSA-MWH) yields a performance of 90.5%, which is worse than e.g. a
total of 105 (75 PLSA-BOVW and 30 PLSA-MWH) or 160 (75 + 85) topics
with performances of 92.6% and 92.7% respectively.

These results indicate that assigning di�erent topic sizes to di�erent features
is a good measure to reach a target dimensionality. It is preferable to train
better features on bigger topic models, as they are likely to contribute more
in the resulting fusion. Finally, given an appropriate topic distribution over
the various features, the fused features are able to outperform single feature
descriptors.

5.3 Using Shot Structure

The series of experiments in Section 5.2 dealt with video classi�cation and the
application of topic models to videos. This means that each video was treated as
one document in the context of topic models. This section will focus on videos
on a shot level, i.e. one shot represents one document. As shots are semantic
units within a video, this will capture a �ner content granularity.

The �rst experiment of this section will compare di�erent dimensionality re-
duction techniques (like Experiment 5.2.2 for videos) on a shot level and include
Color Layout Descriptors as an additional evaluation method. The next experi-
ment will then discuss the impact of training on either whole videos or shots for
testing on shots respectively videos. This will indicate whether it is worthwhile
to spend additional computation time for training on a shot level (which is a
much bigger dataset, e.g. 2500 (DS-2) against 90854 (DS-3A) features). More-
over, the bene�t of using all shot information (as opposed to a single frame
as shot representative) will be explored. The impact of noisy against manu-
ally annotated data is also investigated. Finally, di�erent applications besides
classi�cation are considered: in a clustering scenario, the performance gain by
utilizing the temporal structure of shots (with the Hidden Topic Markov Model)
against a plain bag-of-words model will be evaluated. Also, the impact of topic
models in a retrieval scenario is analyzed.
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Figure 5.8: The mean average precision (MAP) given di�erent feature dimen-
sionalities for the control run (with �xed 2000 dimensions), principal component
analysis, probabilistic latent semantic analysis and color layout descriptors.

5.3.1 Comparing Dimensionality Reduction Techniques

In a �rst experiment, the results from Experiment 5.2.2, where di�erent di-
mensionality reduction techniques were investigated, were validated on a shot
level. Aside from PCA, Color Layout Descriptors (CLD) were added as control
method.

Thus, the 2000-dimensional shot vectors were reduced to k = 10, 20, ..., 200
dimensions using PLSA. The resulting video descriptors were then used as input
for an SVM classi�er, which performed concept detection on the shot test set.

Results are illustrated in Figure 5.8, where the mean average precision
(MAP) is plotted against the feature dimensionality. It can be seen that PLSA
comes close to the performance of the full descriptor (58.9% for 170 topics as
opposed to 62.1% for the full 2000-dimensional feature). Even for 100 topics,
performance is comparable to the full bag-of-visual-words representation (a rel-
ative performance loss of 10.3% occurs) at a compression rate of 1/20. While
PCA is outperformed by PLSA by up to 10.0%, CLD (37.2%) seems to be
roughly on par with PLSA for 12 topics and can be calculated a lot faster.
However, CLD is restricted to 12 components. Also, the performance of topic
models could easily be further improved by using features that also incorporate
color information. For example, van de Sande et al. [74] showed that there is
a signi�cant improvement between normal SIFT and versions of SIFT where
SIFT is performed seperately for each color channel or concatenated with a
color histogram.
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Training

Testing
Video Shots

Video 0.648309 0.645237
Shots 0.625874 0.638786

Table 5.4: Mean average precision achieved when training on videos or shots
(X-axis) and testing accordingly (Y-axis). Each result is based on PLSA-models
with 50 topics.

Shots Frames
MAP 0.8246 0.7949

Table 5.5: Results for Experiment 5.3.3, in which single frames as representatives
for shots are compared to the aggregation of shot information. The MAP of the
aggregated shots is 3.0% higher than for single frames.

This experiment con�rms that topic models are indeed a promising approach
to e�ectively compress semantic information of videos.

5.3.2 Shot vs. Video Information

This experiment investigates if it is sensible to actually train on a set of shots
for shot classi�cation and respectively, on a set of videos for video classi�cation.
While a larger dataset (shots) should generally increase performance, it will also
increase computation time. Moreover, it is usually sensible to train on the same
kind of data for which the model will be used later.

The results in Table 5.4 support these assumptions: for shot classi�cation,
training on a shot set delivers the best results. The same holds true for videos.
However, it is interesting that performance di�erences are so small. Thus, it
might be worthwhile for shot classi�cation to train on a video level, as it will be
trained much faster but will only lead to a small performance penalty (1.3%).

5.3.3 Shots vs. Single Frames

In this experiment, the impact of using shot information (aggregating all frame
histograms) of a shot against using only a single frame of a shot is analyzed.
In particular, it is interesting to see if the additional processing time spent on
extracting features for all frames transfers into a performance gain.

To test this, a shot boundary detection was run on the DS-1 dataset, result-
ing in a training set of roughly 13200 shots, and a test set of 5800 shots. For
the classi�cation using shot information, all frame histograms within that shot
were summed up. For the classi�cation using frames, only the �rst extracted
frame of that shot was used.
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|Shots| 12900 90854
annotated manually automatically
MAP 0.512401 0.638786

Table 5.6: Results for Experiment 5.6, in which the impact of a lot of noisy data
against less, but manually annotated data is compared. The MAP of the noisy
data is 12.6% higher than for the manually annotated data.

As can be seen in Table 5.5, using the whole shot information results in a
performance gain of 3.0%. Thus, it is actually bene�cial to use all available
information for a performance gain, although this leads to longer computation
time as features for all frames have to be extracted. Another interesting result
in this context comes by Borth et al. [12], who compared keyframes against the
�rst frame of a shot and reports performance gains of 2-7%.

5.3.4 Impact of Noise

The question whether manually annotated data is improving results is discussed
in this experiment. To re�ect this, we used the DS-3B dataset, consisting of
12900 manually annotated shots, to train a PLSA and the SVM. This is com-
pared with the full 90854 shots of DS-3A, which are the shot boundaries that
were automatically detected. Each of these shots is automatically annotated
with the tag of the video, resulting in data with a lot more intra-class variance.
Accordingly, the PLSA and SVM were trained on the full 90854 shots. Both
trained models were then investigated on the same test set of 5830 manually
annotated shots.

Thus, this experiment is supposed to show if it is worth investing additional
manual labor to tag shots, or if spending this time in obtaining sheer amounts
of data (roughly 7 times as much data) is preferable.

The results (c.f. Table 5.6) clearly favoring the whole, automatically anno-
tated dataset, which has a performance gain of 12.7%. This implies that it is
not worthwhile to invest in manual annotation of data. Moreover, adding more
and more data is bene�cial for model training, even when it might be very noisy.

5.3.5 Shot Clustering

This experiment investigates whether utilizing the temporal structure of shots
as proposed in Section 4.4 gives further improvements. Both PLSA and HTMM
were applied to the training set of 12, 900 shots, and the reduced topic features
were used to assign shots to clusters. Thereby, each topic corresponds to one
cluster, and each shot D is assigned to the topic (or cluster) with maximum
posterior:

C(D) =arg
k
max P (Zk|D)
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Figure 5.9: Purity for PLSA and HTMM plotted against the number of topics,
which correspond to clusters.

A good clustering should assign shots from the same semantic category to
the same cluster. Purity (c.f. Section 5.1.2) was employed as an evaluation
criterion.

The performance of both HTMM and PLSA is plotted against the number of
topics in Figure 5.9. It can be seen that the HTMM outperforms PLSA, which
indicates that the temporal structure enforced by the HTMM indeed helps for
the task of shot clustering.

5.3.6 Shot Retrieval

This experiment assesses the use of topic models in the context of shot retrieval.
This is especially important for large video collections, as retrieval speed is of
major importance and multiple videos have to be returned. As a dataset, the
manually annotated shots (DS-3B) were used.

The results (c.f. Figure 5.10) show that results perform as expected: having
only few topics (20-40) decreases performance signi�cantly (i.e., of the �rst 5
results for 20 topics, only 38.8% were of the same category, opposed to 44.7%
for 200 topics), while results tend to vary only slightly once enough topics are
reached (80-200).

This experiment also indicates the usefulness of topic models for content-
based video retrieval, and validates the previous observation that a minimum
lower bound for topics has to be reached, since performance will otherwise su�er.

Image Retrieval Note that there is a fundamental �aw with the ground truth
for the shot retrieval experiment: while each shot was manually annotated to

71



Figure 5.10: Achieved precision given di�erent amounts of retrieved results. It
is clear that a minimum number of topics for a PLSA model is necessary, as
performance will su�er otherwise. In this case, using less than 80 topics has bad
e�ects on performance.
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Figure 5.11: Average precision given di�erent topic values in an image retrieval
task (c.f. Experiment 5.3.6). The performance peaks at roughly 50 topics, with
a large drop around 200 topics, likely due to over�tting.

belong to a particular category, this does not provide any further insight into
how close those shots are related. For example, both frames of a ball and a
referee can be associated with the category soccer, even though these two are
completely unrelated � however, the annotation is performed on the concept
level of 'soccer'.

Thus, an additional retrieval experiment was performed in the image do-
main, where better ground truth was available. Speci�cally, the INRIA holidays
dataset [38] with 1488 images were used. This dataset speci�es in detail how
many and which documents should be returned for which query images in which
order and can thus be employed for a far more detailed evaluation.

For the experiment, SIFT features [47] were extracted for all images, and
a codebook with 10000 entries was generated using the extracted patches. 500
of the images where then used for evaluation purposes (using the L1 distance),
and measured using average precision.

The results (c.f. Figure 5.11) indicate that a best performance is reached
at roughly 50 topics, whereas performance seems to degrade at around 200
topics. A possible explanation for this is the issue of over�tting, as both the
number of documents (1488 images) are very large and the number of words per
document is very sparse (on average, 3000 patches occur in an image, which are
mapped to a codebook with 10000 entries). Note that a control run with the full,
10000-dimensional bag-of-visual-words histogram yields an average precision of
40.66%. Thus, using topic models incurs a performance loss of roughly 10.5%
in this case.
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Chapter 6

Conclusion

6.1 Summary of Methods and Results

In this work, topic models were used for semantic compression of videos and
applied to the tasks of video and shot classi�cation and clustering.

Generally, topic models are a way of decomposing a set of documents with
K latent variables called topics, resulting in a topic mixture for each document
and a word mixture for each topic. This means that a document can simply be
described through K topic coe�cients � resulting in a reduced description of
the document if the number of topics is limited enough.

The experiments conducted in this work lead to several conclusions:

� Di�erent methods for feature dimensionality reduction like PCA and RBM
were analyzed and it was shown that topic models (represented by PLSA)
are the best choice for this task.

� Fusion of di�erent visual and motion-related features was explored in the
context of target compression ratios, and found to be bene�cial for overall
performance.

� More data, even though it might be more noisy, is bene�cial during train-
ing of a topic model.

� Representing shots through the aggregation of all frames of that shot is
better than the representation by a single frame.

� In addition, the temporal structure between shots was exploited with the
HTMM and showed superior performance in a clustering scenario com-
pared to plain PLSA.

To summarize these results, it can be stated that topic models are indeed a
good approach for semantic video compression.
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6.2 Future Work

There are several areas of interest that might be worth to pursue further re-
lated to this thesis. For instance, it might be worth to adapt the Hidden Topic
Markov Model to allow it to model each sentence as a topic mixture instead of
a single topic, as this would greatly enhance its usability for tasks like classi�-
cation or similarity search. Another interesting path would be to adapt more
topic models, such as Hierarchical Dirichlet Processes [71], to video content,
and investigate their performance. Analyzing video-speci�c features and their
performance with topic models also seems like an interesting task � the spatial-
temporal features introduced by Niebles et al. [55] are a �rst step in this direc-
tion. Lastly, online learning in the scope of topic models is a task which seems
worth investigation: websites like YouTube with roughly 60,000 new videos per
day are not capable of training completely new topic models with an ever in-
creasing amount of data � aside from the storage requirements, training of a
model would only be complete when the model has already become outdated
again. Thus, adaption of existing models to incorporate new data seems like an
interesting prospective research area.
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