
Media Engineering and Technology

German University in Cairo

and

Multimedia Analysis and Data Mining Competence Center

German Research Center for Artificial Intelligence (DFKI GmbH)
Kaiserslautern, Germany

Classifiers’ Accuracy Prediction
based on Data Characterization

Bachelor Thesis

Author: Sarah Daniel Abdelmessih

Reviewer: Prof. Dr. Andreas Dengel

Supervisors: Dr. Faisal Shafait

Christian Kofler

Submission Date: 27 August, 2010

This is to certify that:

(i) the thesis comprises only my original work toward the Bachelor Degree

(ii) due acknowlegement has been made in the text to all other material used

Sarah Daniel Abdelmessih
27 August, 2010

Acknowledgement

‘‘The God of heaven, He will prosper us; therefore we His servants will arise and build.”
(Nehemia 2:20).

I eagerly proclaim that this bible verse was my driving force that motivated me to
pursue all the work done and achieve best results.

First of all I would like to thank my parents for their emotional and financial support
and encouragement. Furthermore, I would like to show my gratitude towards Prof. Slim
Abdennadher and Prof. Andreas Dengel, who gave me the opportunity to do my
bachelor thesis at the German Research Center for Artificial Intelligence (DFKI).

Special thanks to:

Dr. Faisal Shafait for his supervision and technical support.

Christian Koefler for his supervision, encouragement and technical support.

Matthias Reif and Markus Goldstein for their technical support.

Moheb Elmasry and Nazly Sabbour for reviewing this report, encouragement, and
support.

I am also very thankful to Dr. Thomas Kieninger, Brigitte Selzer, and Leivy Michelly
Kaul for taking care of all the paper work and administrative issues. In addition, I would
like to thank my sister, Suzette, for her support and encouragement.

3

Abstract

In machine learning, picking the best classifier for a given problem is a challenging task.
A recent research field called meta-learning automates this procedure by using a meta-
classifier in order to predict the best classifier for a given dataset. Using regression
techniques, even a ranking of preferred learning algorithms can be determined. However,
all methods are based on a prior extraction of meta-features from datasets. Landmarking
is a recent method of computing meta-features, which uses the accuracies of some simple
classifiers as characteristics of a dataset. Considered as the first meta-learning step in
RapidMiner, a new operator called landmarking has been developed. Evaluations based
on 90 datasets, mainly from the UCI repository, show that the landmarking features from
the proposed operator are useful for predicting classifiers’ accuracies based on regression.
In this work a collaborative user interface, which is integrated with a tool called Classifier
Recommender, is introduced. It mainly facilitates the use of machine-learning methods
or algorithms over the web and provides users with the functionality of sharing data and
experiments.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Outline . 6

2 Meta-Learning 7
2.1 State of the art . 7

2.1.1 Classification . 7
2.1.2 Regression Analysis . 9
2.1.3 Different Approaches for Meta-Learning 10

2.2 Meta-Features Extraction . 12
2.2.1 Simple Features . 12
2.2.2 Statistical Features . 13
2.2.3 Information Theoretic Features 14
2.2.4 Landmarking . 14

2.3 Landmarking Operator in RapidMiner 15
2.3.1 RapidMiner Terminology . 15
2.3.2 Landmarking Operator Functionality 16
2.3.3 Landmarking Operator Architecture 18

2.4 Classifier’s Accuracy Prediction . 21

3 Collaborative User Interface 22
3.1 Overview . 22
3.2 Application Description . 22

3.2.1 Tools and Libraries . 23
3.2.2 Architecture . 23

4 Evaluation 34
4.1 Experiment Setup . 34

4.1.1 Case Base Creation . 35
4.1.2 Accuracy prediction . 37
4.1.3 Experiments on Meta-Features 38
4.1.4 Evaluation Measurements . 38

4.2 Results and Discussion . 39
4.2.1 Comparison of all Meta-Features 39
4.2.2 Evaluation of Landmarking Features 41
4.2.3 Suitable Landmarkers for particular Classifiers 45

1

5 Conclusion and Outlook 48

A Appendix 52
A.1 List of Datasets used . 52
A.2 Sample of Landmarking Features computed 55

2

Chapter 1

Introduction

Data Mining is involved with automating the process of searching for patterns and trying
to classify data into categories, based on the regularities recognized in the data. Pattern
Recognition and Machine Learning are growing fields in this research area. They have
great potential for other research fields and applications, such as face recognition, image
analysis, speech recognition, handwritten character recognition, sequence analysis in the
field of bioinformatics or cancer diagnosis. However, such systems are data-driven, which
means that they have to be adapted according to the environment and the problem.
Therefore, most of the pattern recognition and machine learning systems, methods or
tools are mostly used by experts. Another problem is the integration of these methods
in real-world software systems; it is still a trying experience for software developers and
users.
Herein, the Pattern Recognition Engineering (PaREn)1 project aims at facilitating pat-
tern recognition and machine learning methods for non-expert users. The project target
is to develop new tools for methods and algorithms that support automating parame-
ter optimization, model selection, machine learning system construction, rapid testing,
validation, and on-line adaptivity. In addition, a powerful tool called Classifier Recom-
mender, was developed. This tool suggests learning algorithms for a problem by predict-
ing their accuracies and then evaluating algorithms selected by the user. This tool was
also integrated in a web application, called Collaborative User Interface (CUI), as part of
this thesis. RapidMiner (Mierswa et al., 2006), which is an open-source system for data
mining, was chosen as a software platform, to deliver PaREn technologies and tools as
open-source.

1.1 Motivation

Predicting the performance of classifiers, ranking learning algorithms, and a dynamic
selection of a suitable learning algorithm for a given problem are recent research topics in
machine learning (Brazdil et al., 2003; Soares and Brazdil, 2000; Vilalta and Drissi, 2002).
As derived from the No Free Lunch Theorem, no learning algorithm can be specified
as outperforming on the set of all real-world problems (Wolpert and Macready, 1995).

1This project is initialized by the German Research Center for Artificial Intelligence (DFKI) and
funded by the Federal Ministry of Education and Research. For more details see http://madm.dfki.

de/paren/.

3

http://madm.dfki.de/paren/
http://madm.dfki.de/paren/

This implies that a learning algorithm has reasonable performance on a set of problems,
defined as its area of expertise (Vilalta and Drissi, 2002). As illustrated in Figure 1.1,
each algorithm has its own set of problems on which it performs well, however, some
algorithms share a subset of their area of expertise.

Set of all problems

A 1

A2

A 3

A 6

A 4

A 5

A 7

Figure 1.1: A dummy example of the area of expertise of algorithm A 1 to A 7 defined in
the set of all problems. Each algorithm has a different area of expertise. However, some
algorithms share some datasets, such as A 1 and A2.

In this context, meta-learning was developed: it relates algorithms to their area of exper-
tise using specific problem characteristics. The idea of meta-learning is to learn about
classifiers or learning algorithms, in terms of the kind of data, for which they actually
perform well (Smith-Miles, 2008; Ali and Smith, 2006). Using dataset characteristics,
which are called meta-features (Castiello et al., 2005; Ali and Smith, 2006), one predicts
the performance results of individual learning algorithms. These features are divided into
several categories (Castiello et al., 2005):

• simple/general features (number of attributes, number of categorical attributes,
number of samples, . . .).

4

For each classifier

For each classifier Case Base

Evaluation Dataset
1

Dataset
2

Dataset
3

Dataset
4

…

Dataset
n

Cross
Validation

Meta-Feature Extraction

Dataset q

Meta-Learning
Model

Predict Accuracy

Landmarking

Classifier

P
re

p
ro

c
e

s
s
in

g

Landmarking

It
er

at
e

Performance 1
Performance 2
Performance 3
Performance 4

…
Performance n

Meta Features 1
Meta Features 2
Meta Features 3
Meta Features 4

…
Meta Features n

Regression

Figure 1.2: Schematic view of meta-learning: on the left, the case base is created, on
the right an unknown dataset is processed and a suitable classifier is recommended.

• statistical features (canonical discriminant correlations, skew, kurtosis, . . .) (King
et al., 1995).

• information theoretic features (class entropy, signal-to-noise ratio, . . .).

In addition, a new feature category called landmarking was proposed (Pfahringer et al.,
2000). Landmarking features are classification accuracies of some simple but fast com-
putable learning algorithms, mostly related to more complex classifiers.
Figure 1.2 gives a general schematic overview of a meta-learning system: it shows, that
for a number of datasets, multiple classifiers are evaluated. From these datasets land-
marking features are extracted, as explained in Section 2.2.4. All results are stored in a
central case base as later explained in Section 4 and a meta-learning model is trained.
Later, if an unknown dataset q needs to be processed, landmarking features are extracted
and using the meta-learning model, a classifiers’ accuracies are predicted.

As a contribution of this thesis, a landmarking operator was developed on top of
PaREn as the first meta-learning step in RapidMiner. Details about this operator are
provided in Section 2.3.

5

1.2 Thesis Outline

The report is composed of the following major parts:

Chapter 2 is divided into four sections. The first section provides some important
definitions in the field of Pattern Recognition and elaborates different approaches for
meta-learning. The subsequent section gives definitions about some meta-features.
Then, an overview of the developed landmarking operator is described. In the
last section, the basic idea of predicting classifier’s accuracy based on regression is
explained.

Chapter 3 shows the idea of the CUI and gives an insight into its implementation and
the integration of the Classifier Recommender into it.

Chapter 4 provides experiment setup and important results of the evaluation of the
landmarking features compared to other meta-features, based on UCI and StatLib-
datasets.

Chapter 5 concludes the developed tools and the evaluation. Furthermore, it states
interesting discussion points.

6

Chapter 2

Meta-Learning

This chapter presents background knowledge about classification, regression and different
approaches for meta-learning. Furthermore, it explains the different meta-features and
the prediction of algorithms accuracy on a given problem using regression. In addition,
an overview of the developed landmarking operator is provided.

2.1 State of the art

In this section, an overview of basic definitions and meta-learning approaches are pro-
vided.

2.1.1 Classification

Classification is defined as associating input data to discrete categories, where the num-
ber of categories is finite. For example, if a handwritten digit is to be recognized, a
classification algorithm will assign it to one of the categories from zero to nine. This is
achieved by executing a learning algorithm that classifies data, which is called classifier.
Any classification process has two phases:

1. Training or learning phase: in this phase the learning algorithm is applied on a
subset of the dataset, called training data. This results in a trained model.

2. Test phase: in this phase another subset of the data, called test data, is evaluated
using the model created in the training phase. The ability of the model to categorize
the test data is called generalization.

Due to the variability of problem types, complexities, and different attribute types
(e.g., numerical or nominal attributes), many learning algorithms were developed, where
each learning algorithm has an area of expertise (Vilalta and Drissi, 2002). To reduce the
complexity of a problem and speed up the classification process, preprocessing or feature
extraction is applied on the dataset. Preprocessing aims to make the problem easier to
solve, by reducing the variability of class categories.
Some learning algorithms create their model using input data and some adjustable pa-
rameters. These parameters affect the model’s accuracy and should be set according to
the problems features and complexity.

7

In this context, the concept of parameter optimization was developed. Consequently, a
recent research area called automatic parameter optimization was initiated. A commonly
used method for parameter optimization is grid search. This method takes at least two
inputs:

1. A problem.

2. n number of parameters of an algorithm. Note, that several algorithms’ parameters
can be given as input to the grid search algorithm.

The grid search algorithm further tries to find the optimal combination for the n param-
eter values, such that the best performance of the algorithm on the given dataset can be
achieved. The grid search algorithm has some parameters that should be adjusted for
each of the n input parameters. These are:

• Range: is the range of the values in which the algorithm searches for the optimal
values for the parameters that should be optimized.

• Steps: is the number of values that should be chosen from the specified range.

• Scale: is the methodology by which the values should be chosen from the specified
range. The values can be chosen in a linear, quadratic or logarithmic manner.

The total number of combinations of parameter values tried by the grid search is equal
to the product of the steps of all the parameters. For example, if two parameters should
be optimized, each having ten steps, then the number of combinations equals 100.

Cross-Validation

To enhance the performance of a learning model and have a better generalization, vali-
dation should be applied on a given problem. The idea is to have a subset of the dataset,
called validation set, that is not included in the training set, and is considered as a
test set. One of the most powerful validation techniques is the cross-validation. In this
technique the performance of an algorithm on an input dataset is averaged over several
rounds of evaluation. In each round the analysis is done on the training set, and then the
validation is performed using the validation set, where the subsets differ from one round
to the other. An important issue is how many rounds should be performed. The best
performance is achieved if the validation set consists of one example and the number of
iterations is equal to the size of the dataset. That is called leave-one-out cross-validation,
however, this is very expensive for large and complex problems, due to the time and
resource consumption the computations need. Therefore, the k-fold cross-validation is
commonly used, where k specifies the number of rounds.

Learning Algorithms

In this section learning algorithms that were used throughout the work are described:

Naive Bayes is a probabilistic classifier, based on Bayes’ Theorem:

p(X|Y) =
p(Y |X) · p(X)

p(Y)
(2.1)

8

where p(X) is the prior probability and p(X|Y) is the posterior probability. It is
called naive, because it assumes independence of all attributes to each other.

K-Nearest Neighbor (K-NN) is an instance-based learning algorithm. This type of
algorithm does not perform generalization. Instead, it compares the instances of
the test set with instances in the training set. This algorithm simply checks the k-
nearest neighbors to the current test instance, and assigns it to the dominant class
by voting, where the dominant class is the most common class in the k-neighbors.
These neighbors are specified by measuring the distance between the attributes.

LibSVM is a library for Support Vector Machine (SVM). The SVM model represents
the dataset examples as points in space by trying to cluster separate categories by
the widest gap possible. It constructs an N-dimensional hyperplane that separates
the different categories. This algorithm has some parameters, such as C and γ, that
are provided by the LibSVM library.

MultiLayer Perceptron (MLP) is a feedforward neural network, which means that
the connections between the layers do not form directed cycles. It is an extension
of the linear perceptron algorithm. The linear perceptron algorithm consists of
two layers: input and output. The sum of the weighted input values is passed to
an activation function and then the output is predicted. In the MLP the same
procedure is applied, but an extra layer called hidden layer is added between the
input and output layer. This algorithm is more powerful than the linear perceptron,
as it can distinguish data that is not linearly separable.

Decision Tree is a tree in which the nodes represent attributes of a dataset. The at-
tributes are chosen according to some criterion, such as information gain. The
information gain indicates how informative an attribute is with respect to the clas-
sification task using its entropy. The higher the variability of the attribute values,
the higher its information gain. The attributes with the better criterion value (e.g.,
higher information gain) are chosen to create the next node. The leaves of the tree
represent the classes.

Random forest is based on the Decision Tree algorithm. It randomly creates different
decision trees and outputs the class that is the mode of the output classes of the
individual trees. Mode is defined as the value that occurs most frequently.

One-attribute-Rule (OneR) is an algorithm for finding a rule, such that the mini-
mum error attribute is chosen for prediction. A rule is created for each attribute
and the one with the lowest error is chosen. A single node decision tree consisting
of the chosen attribute as root is then built as a classification model.

2.1.2 Regression Analysis

In contrast to classification, regression is a task for which the output is one or more contin-
uous variables. In the regression analysis a relation between dependent and independent
variables is established. Dependent variables are the output values of a dataset, and the
dataset attributes are considered as independent variables. Throughout the analysis, it

9

Figure 2.1: Example for linear regression on dummy data. The line drawn in green is the
regression model created, based on the values of variable (v1) and the output (out). The
dashed red line shows how a new variable value x can be mapped to an output value y
using the regression model.

is aimed to find out how the values of the dependent variables change, whenever one or
more independent variables vary. Based on this analysis a model or function is created to
be able to map a set of independent variables to an output value. A regression model can
be a line, a plane, or a hyperplane, depending on the number of variables or parameters
combined.
One of the simplest forms of regression is linear regression, where a linear combination
of parameters is constructed to build the model. Figure 2.1 illustrates an example of a
linear regression model on one variable (v1) only. In this figure, it is shown how a new
value x for the v1 can be mapped to an output value y using the regression model, which
is a line in this case.

2.1.3 Different Approaches for Meta-Learning

Meta-learning is learning about learning algorithms, so that one can predict classifiers’
accuracies, select the best suitable algorithm for a specific problem, or optimize algorithm
parameters to be optimal for a problem instance. Many approaches were made trying to
map a problem instance to a learning algorithm (Smith-Miles, 2008):

• Rice (1976) constructed a model for algorithm selection, which is illustrated in
Figure 2.2. As depicted in the model, for a given problem x, and its extracted
features f(x), an algorithm α is selected by the mapping S(f(x)), such that α
maximizes the performance mapping y(α(x)). The aim was to find the mapping

10

function S(f(x)) that finds the best performant learning algorithm for a given
problem x. However, Rice (1976) could not find the mapping function for algorithm
selection problem and the model was considered as an abstract model.

• The next approach for algorithm selection was presented by Rendell and Cho (1990).
They tried to experiment the effect of certain features on learning algorithms. These
features are related to the size and concentration of the classes in a problem. Then
this idea was developed to use simple features, described in Subsection 2.2.1, in
order to create rules to decide whether an algorithm should be used for the given
feature set or not. This technique was then extended to develop rules that state
whether an algorithm performs well on an instance problem, in order to recommend
a better classifier at run-time.

• The European project titled StatLog (King et al., 1995) aimed to evaluate the var-
ious classification approaches and to relate the performance of learning algorithms
to problem characteristics. In this project, more feature types were taken into con-
sideration, such as statistical and information theoretic features (Michie et al., 1994;
King et al., 1995). To learn a rule for an algorithm, the decision tree learner was
used. The nodes of the tree contained the features and their values, for which the
algorithm outperformed other learning algorithms.

• The idea of the StatLog project was extended by Gama and Brazdil (1995). Instead
of using decision trees to construct rules for each algorithm, regression was used.
Based on this idea the evaluations, described in Chapter 4, were performed. In
addition, the Classifier Recommender tool of the PaREn project was developed
using the regression approach.

• In contrast to developing rules, Case-based reasoning (CBR), which is the process of
solving a new problem based on the solutions of similar past problems, was used for
meta-learning (Lindner and Studer, 1999). CBR is used to calculate the similarity
between the problems based on their meta-features. Based on this similarity a set
of one or more learning algorithms is recommended to the user.

• METAL Petrak (2002) is another project that was created based on the success of
the StatLog project. The goal of this project was to provide model or algorithm
selection approaches, supported in an on-line environment. The performance results
were based on a ten-fold cross-validation. In addition, a tool called METAL Data
Characterization Tool (DCT) was developed and was used in the evaluation as
described in Subsection 4.1.1.

• Another approach in meta-learning is the ranking technique (Brazdil et al., 2003;
Soares and Brazdil, 2000). Instead of selecting a single algorithm for a problem, a set
of learning algorithms are ranked according to their performance on the problem.
Time and accuracy were the major performance criteria on which the approach
was based. This methodology used the K-NN algorithm to identify the similarity
between datasets, based on their meta-features. Then, the algorithms of the k most
similar datasets to the current problem instance are chosen to be ranked. These
algorithms are then evaluated on the problem and their performance accuracy is
provided to the user.

11

Figure 2.2: Schematic diagram of Rice’s algorithm selection problem model. The objec-
tive is to determine the selection mapping S that returns the best algorithm α. This
figure is taken from Smith-Miles (2008).

In the Statlog project it was stated that the effort for calculating features is sometimes
greater than that for running some simple algorithms. In this context, the idea of relating
simple algorithms to more complex algorithms was proposed and was developed in the
METAL project. This approach is called landmarking. It is the major contribution of
this thesis and will be discussed in the next two sections.

2.2 Meta-Features Extraction

In this section an overview of the different categories of meta-features is provided, wherein
the landmarking features are discussed in detail (King et al., 1995; Castiello et al., 2005).

2.2.1 Simple Features

Simple features are general information that can be extracted from a dataset, which
measure the problem’s size or complexity. The following features are the most important
simple features:

Number of samples represents the total number of samples observed by the dataset.

Number of attributes is the total number of attributes contained in the dataset, in-
cluding numerical and nominal attributes. The larger the number of attributes of
a problem, the more complex its classification is.

Number of output values represents the number of output values or classes in the
dataset.

Dataset dimensionality is the ratio between the two features: number of attributes
and number of samples of the dataset.

Number of categorical attributes represents the number of nominal attributes in the
dataset. Nominal attributes may be complex for some algorithms in terms of cal-
culations; therefore, they may increase the execution time and complexity of the

12

problem. Some other algorithms, such as the linear discriminant analysis can not
handle these attributes. Therefore, preprocessing needs to be applied on the dataset
(e.g., convert the attributes to numerical ones) to be able to evaluate it.

2.2.2 Statistical Features

The statistical features are statistical measures that indicate the distribution of attributes
and their correlation. Before explaining these features some basic principles have to be
defined:

Standard deviation: measures the variability or dispersion in the distribution.

Covariance: is a measure for how two variables, in that case attributes, change with
respect to each other.

Principle Component Analysis (PCA): is the procedure of reducing the complex-
ity of high dimensional data by reducing the number of variables. A principal
component is a linear combination of variables, which accounts for as much of the
variability in the data as possible. Each succeeding component accounts for as
much of the remaining variability as possible and is orthogonal to all the previous
principle components.

Canonical correlation analysis: assesses the relationship between two sets of vari-
ables. In this technique, a linear combination of variables from each set is derived,
such that the correlation between the two combinations is maximized.

A description of statistical measures that were mainly used in the evaluation repre-
sented in Chapter 4, is provided below:

Homogeinity of covariance: is a measure of the affinity of the covariance of the at-
tributes. As defined in King et al. (1995), it is “the geometric mean ratio of standard
deviations of the populations of individual classes to the standard deviations of the
sample”.

Canonical discriminant correlation: is based on PCA, canonical correlation, and
projection of the attribute’s space. It tries to successively find linear combina-
tions of attributes that discriminate between the examples and are orthogonal to
each other. As stated in King et al. (1995) “Canonical discriminants systemati-
cally project the n attribute space to n− 1, maximizing the ratio of between-mean
distances to within cluster (population centers of examples) distances; successive
discriminants are orthogonal to earlier discriminants”.

Variance by the first q canonical discriminants: is related to the canonical discrim-
inant analysis. It is explained by King et al. (1995) as “The sum of the first q eigen-
values of the canonical discriminant matrix divided by the sum of all the eignvalues
represents the “proportion of total variation” explained by the first q canonical
discriminants”.

Skew is a measure of asymmetry of the distribution of an attribute. If it has a value of
zero, then it is a uniform variable that is normally distributed.

13

Kurtosis is a measure of the “peakedness” of the probability distribution of an attribute.
The higher its value, the sharper is the peak of the distribution.

Mean absolute correlation coefficient: is based on the correlation between attributes,
which is calculated for each class separately. It is considered as a measure of the
interdependence between attributes. As stated in King et al. (1995) the nearer
the correlation between the attributes to unity, the more redundant data is in the
attributes.

2.2.3 Information Theoretic Features

The information theoretic features are indicators for characteristics of datasets containing
categorical attributes. These features measure the randomness of an instance to indicate
whether a problem has a structure or not, implying how hard a problem is. The following
information theoretic measures can be distinguished:

Class entropy: in general, entropy is a measure for the randomness or distribution of a
variable. High entropy indicates the uniformity of the distribution of the variable,
while low entropy implies high variations in the distribution of the variable. In this
context, class entropy measures how much information is needed to specify a given
class.

Noise to signal ratio: is a measure of the noise, which is the amount of irrelevant
information contained in the dataset.

2.2.4 Landmarking

Every problem or dataset has certain characteristics that relates it to an area of expertise
for which a specific learning algorithm exists. In this context, landmarking features are
defined as dataset characteristics representing the performance of some simple learners
on this dataset. These simple learners are called landmarkers.
The basic hypothesis behind landmarking is that the simple landmarkers are somehow
related to more advanced and complex learners. This means that landmarkers or com-
binations thereof are able to estimate the performance of more sophisticated algorithms
for a given problem. This raises the question of how to choose the learners that are ideal
as landmarkers. They have to satisfy the following conditions (Pfahringer et al., 2000):

• The algorithm has to be simple, which requires its execution time to be short,
implying minimal computational complexity of the learner (Bensusan and Giraud-
Carrier, 2000).

• The landmarkers have to differ in their bias, mechanism, property measurements,
or area of expertise (Vilalta and Drissi, 2002).

• Every landmarker has to be simpler than the targeted advanced learner. Otherwise
the landmarker will be useless, since the targeted learning algorithms could be
evaluated directly, avoiding a potentially error prone prediction step and saving
time (Bensusan and Giraud-Carrier, 2000).

14

The landmarkers used in the implemented RapidMiner landmarking operator are (Pfahringer
et al., 2000; Bensusan and Kalousis, 2001; Giraud-Carrier, 2008):

Naive Bayes Learner described in Subsection 2.1.1.

Linear Discriminant Learner is a type of discriminant analysis, which is understood
as the grouping and separation of categories according to specific features. Linear
discriminant is basically finding a linear combination of features that separates the
classes best. The resulting separation model is a line, a plane, or a hyperplane,
depending on the number of features combined.

One Nearest Neighbor Learner is a K-NN classifier with k equal to one. In this
algorithm a test point is assigned to the class of the nearest point within the training
set.

Decision Node Learner is a classifier based on the information gain of attributes. This
learner selects the attribute with the highest information gain. Then, it creates a
single node decision tree consisting of the chosen attribute as a split node.

Randomly Chosen Node Learner is a classifier that results also in a single decision
node, based on a randomly chosen attribute.

Worst Node Learner is a classifier that calculates the highest information gain for a
split for all the attributes. Then it chooses the attribute with the lowest information
gain among all attributes to model a single node decision tree.

Average Node Learner calculates the average performance of single node decision
trees, where each node corresponds to one attribute.

The accuracies of the above defined algorithms are used as landmarking features for the
task of meta-learning.

2.3 Landmarking Operator in RapidMiner

The landmarking operator, developed as part of this thesis, is the starting point for
meta-learning using RapidMiner. It can be easily extended and used to build meta-
learning processes, such as classifier recommender or automatic algorithm selection. In
this section, an overview of the design of the landmarking operator is provided.

2.3.1 RapidMiner Terminology

Before going into details of the landmarking operator, some RapidMiner terminology has
to be defined:

• Operator is the super-class of any operator implemented in RapidMiner. To be
precise, an operator is an object that accepts an array of input objects, does some
operations or processes based on its defined role, and then returns an array of
output objects. These inputs and outputs of an operator are delivered or received
through ports that can be connected to other operators’ ports. Operators can have

15

parameters as settings for its operations or processes. The processes or operations of
an operator are performed in a method called doWork, which has to be implemented
by every operator. This method is invoked when the operator is executed in order
to start its processes. Moreover, an operator can be encapsulated or embedded in
another operator as a subprocess.

• ExampleSet is an interface that represents datasets. It can be passed to operators
as input or delivered by an operator as output. This ensures that example sets can
be preprocessed or processed by an operator.

2.3.2 Landmarking Operator Functionality

Figure 2.3: The landmarking operator in RapidMiner. In the middle of the figure, the
process tab is depicted. In this tab the landmarking operator is connected to a ReadXRFF
operator to get an input ExampleSet. The parameters of the operator are represented in
the Parameters tab on the right. These are the default settings of the parameters of the
landmarking operator.

As shown in Figure 2.3, the landmarking operator has two ports: an input port that
should receive an ExampleSet, and an output port. The delivered output contains the
landmarking results in the form of an ExampleSet, having the landmarkers as attributes,

16

and their accuracies as attribute values. Some parameter settings are provided to make
the operator adequate to problem requirements. The user has control over:

• the landmarkers to be evaluated.

• whether the landmarkers should be encapsulated into a cross-validation process or
not. If this parameter is not enabled, the input dataset is considered as training
and test set at the same time.

• the preprocessing of the input ExampleSet by normalization.

By default all the landmarkers described in Section 2.2.4 are enabled and the normal-
ization property is set to true with a range [0, 1]. However, since several classifiers have
special properties or requirements, some landmarkers have to preprocess the input dataset
or have to use the classifier in a certain way. For example, it is illogical to evaluate the
One Nearest Neighbor landmarker without using cross-validation, as the prediction will
be always correct by picking the point itself as the nearest neighbor, resulting in a 100%
accuracy. Another specially handled landmarker is the Linear Discriminant Learner: It
is set to be never validated using cross-validation, because of the inability of the Rapid-
Miner operator to run always correctly in this case. Furthermore, some preprocessing is
applied on its input ExampleSet. The preprocessing steps employed are:

1. Removing mappings of label values that actually do not occur in the examples of
the dataset, as RapidMiner’s linear discriminant operator can not handle this case.

2. Converting all polynominal attributes to binominal, then to numerical attributes,
as the linear discriminant analysis operator does not support nominal attributes.

If cross-validation is applied on an ExampleSet with a total number of examples smaller
than the chosen number of folds, a leave-one-out cross-validation is performed instead
automatically.

2.3.3 Landmarking Operator Architecture

The developed landmarking operator consists of three important components, namely
AbstractLandmarker, LandmarkingOperator, and LandmarkingResults. AbstractLand-
marker is the super-class of all landmarkers, as illustrated in Figure 2.4. The main
method of this class is learnExampleSet, which evaluates the performance of the model
of the passed Operator on the input ExampleSet, according to the parameter settings de-
scribed in Section 2.3.2. Any landmarker has to be a sub-class of AbstractLandmarker,
having its own operator and specific preprocessing or parameter settings. Figure 2.4
shows the relation between the landmarkers and RapidMiner operators. All decision
node landmarkers use RapidMiner’s DecisionStumpLearner to create their decision node.
This is achieved by reducing the attribute set of their input dataset according to their
definition and using the information gain of the attributes. The other landmarkers are
simply mapped to their corresponding operators in RapidMiner, as depicted in Figure 2.4.
To integrate the landmarkers in a single operator in RapidMiner, the LandmarkingOper-
ator has been developed as a sub-class of Operator. The interaction point between the
operator and the landmarkers is the doWork method of the landmarking operator. As
illustrated in Figure 2.5, the following sequence of operations is performed in this method:

17

Figure 2.4: Class diagram for RapidMiner’s landmarking operator

• By calling the major method evaluateLandmarkers:

– A map containing the parameters described in Section 2.3.2 as key is cre-
ated. For any additional parameters that should be passed to a landmarker, a
modification of the map can be easily done in the LandmarkingOperator class.

– The constructed parameters Map is passed to the landmarkers and each land-
marker process is managed separately. The result of each landmarker is added
to a LandmarkingResults object x.

– The LandmarkingResults object x is returned.

• The result of the evaluated landmarkers is controlled by LandmarkingResults class.
This result object x contains a map, landmarkersResult, that is filled after the evalu-
ation of a landmarker with its name and accuracy. Then, the LandmarkingOperator
parses the LandmarkingResults object to an ExampleSet.

• The ExampleSet is delivered to the output port of the operator.

Figure 2.6 shows a sample output of the landmarking operator. If one is interested in
results other than the accuracy (e.g., absolute error, RMSE, . . .), a key and a value can
be easily added to the result map.

18

Evaluatelandmarkers()

For each Landmarker:

Create a Map containing the parameters for the landmarkers evaluation

Evaluate landmarker

Add result to LandmarkingResults object

Landmarking Result

Parameters

LandmarkingResults object

Parse LandmarkingResults object

Deliver ExampleSet

Figure 2.5: Sequence of the operations performed in the doWork() method of Rapid-
Miner’s landmarking operator

Figure 2.6: Sample output of the landmarking operator. In the header of the table, the
names of the different landmarkers that were evaluated are represented. The first row,
shows the calculated accuracy of each landmarker.

19

2.4 Classifier’s Accuracy Prediction

As clarified in the introduction and in Section 2.1, there are several approaches for meta-
learning. Classifier accuracy prediction is part of meta-learning and there are several
techniques proposed for such a system. In this chapter, the basic idea of how regression
can be used to predict classifier’s accuracy based on meta-features is provided1.
Every problem has some meta-features that can be extracted from it. These meta-
features are very useful properties that can be used as input variables for a regression
model. In this approach, a regression model is used as a meta-learning model for the
meta-learning system, as illustrated in Figure 1.2. To predict the classifier’s accuracy
using meta-features and regression the following steps should be employed:

1. Choose one or more meta-features (described in Section 2.2), on which the predic-
tion should be based.

2. Extract these meta-features from the training datasets.

3. Evaluate the classifier on all the training datasets, computing its accuracy.

4. Train the regression model on these datasets by using the meta-features along with
the computed accuracies as input variables for the regression analysis.

5. Giving the meta-features of any new problem to the constructed regression model,
the model will return the predicted accuracy of the classifier.

This approach for predicting classifier’s accuracy based on dataset characteristics was
used for the evaluation of landmarking features (provided in Chapter 4).

1A paper about regression for meta-learning will be published soon

20

Chapter 3

Collaborative User Interface

In this chapter, an overview of the Collaborative User Interface (CUI), which provides
pattern recognition and meta-learning functionalities over the web, is presented.

3.1 Overview

The CUI is part of the PaREn project. It is a web application integrated with the rich
PaREn tools and functionalities. The aim of the development of this application is to
facilitate the usability of the PaREn tools for non-expert users or beginners. Furthermore,
it provides the users with a repository for sharing data, experiments, and experience.

This thesis contributed in transforming the previously developed prototype into a
more stable release. In this section, an overview of some functionalities related to meta-
learning and classifier recommendation is provided. Some of these functionalities are:

• uploading datasets to the users repository on the server. The developed application
accepts only XRFF format datasets.

• sharing datasets with other users

• recommending a classifier for a dataset by performing two steps:

1. predicting the accuracies of some classifiers

2. evaluating the classifiers selected by the users on the dataset to get their
accuracies.

3. Save the optimized pipeline, in order to provide it to the user.

• downloading the optimized pipeline of the evaluated classifiers as RapidMiner pro-
cesses in eXtensible Markup Language (XML) format.

3.2 Application Description

In this section, an overview of the architecture and design of the CUI is provided to
understand how it can be modified or extended.

21

3.2.1 Tools and Libraries

The application is built on top of the J2EE framework. It is developed using Java Server
Pages (JSP), Java Servlets, and the following tools and libraries:

Glassfish Server1 as a server for the web application.

JavaScript Object Notation (JSON) is a lightweight data-interchange format used
to send data from the client side to the server side and vice versa. Data can be
represented as objects or arrays of values. An object has simply the structure of
name\value pairs placed between curly braces (e.g., {name1:value1, name2:value2,. . . }).
The data stored in an array is represented as values. For instance, an array of objects
can have this structure: array=[{name1:value1},{name2:value2},{name3:value3},. . .].
FLEXJSON 2 was used as a library for JSON in Java. The main advantage of this
library is its ability to serialize Java objects into JSON and to deserialize JSON
strings into Java objects.

Dojo a JavaScript tool kit that facilitates some operations, such as creating widgets,
uploading files, and manipulating JSON data.

RapidMiner was integrated in the application as a Java ARchive (JAR) library, in
order to use its objects and operators.

3.2.2 Architecture

To have an agile architecture, the application was developed based on the Model-View-
Controller (MVC) architecture. As shown in Figure 3.1, the system is composed of several
packages. The Data Access Object (DAO) and Beans packages represent the model part
of the architecture, where the Servlets package acts as a controller for incoming client
requests. As part of the architecture, the Web Content depicted on the right side of
Figure 3.1, represents the view that manages the graphical user interface. Each package
has a main responsibility that is achieved by its classes:

• Beans: is responsible for classes that represent stored data as Java bean objects.

• DAO: The DAO classes access, update, and retrieve stored data from the local
disk. These classes use the bean objects to wrap stored data. In addition, they
manipulate retrieved data as beans that are returned to the Servlets.

• Servlets: The Servlet classes in this package respond to HTTP requests fired by the
client and control the data and actions that are sent to the client as a response. In
order to send data from the server side to the client side, the servlets communicate
with DAOs to retrieve the needed information as objects or beans.

• RapidMiner Handler: classes in this package handle RapidMiner processes, such as
the classifier recommender steps described later.

• Utils: is responsible for instance for file services or for FLEXJSON operations, such
as serialization and deserialization of objects.

22

F
ig

u
re

3.
1:

U
se

C
as

e
P

ac
ka

ge
D

ia
gr

am
fo

r
th

e
C

ol
la

b
or

at
iv

e
U

se
r

In
te

rf
ac

e

23

The data is stored in JSON format. A reason for why it was chosen to store data in
files is to avoid costly operations of accessing a database. Furthermore, JSON format
was used, as it makes the communication between the server and client easier and faster.
Another reason is that there is no need neither to convert the stored data to any other
format to send it to the client nor to convert the received data by the server into another
format to store it. Thus, using DOJO and FLEXJSON library the data was directly and
simply manipulated using serialization and deserialization.
Analogous to databases, an entry of the stored data has an id. Most bean objects
have some important attributes, as depicted in Figure 3.2, that are used to control and
manipulate stored data easily:

• DatasetBean and ExperimentBean: These beans have an id that identifies the
datasets and the experiments uniquely. In addition, they have an owner id that
represents the user id, who uploaded the dataset or executed the experiment. A list
of users’ ids, with whom the user shares his data or experiments, is part of these
objects. In addition, any experiment bean has a dataset id that corresponds to the
dataset on which the experiment should be evaluated.

• Repository beans: These beans have several attributes that manage the other beans:

– An idCounter variable that represents the available id number that will be
assigned to a new experiment, dataset, or user, respectively, that should be
added to the storage.

– A list including other bean objects that will be referred to as an entry. As
shown in Figure 3.2, the DatasetsRepositoryBean and the ExperimentsRepos-
itoryBean have a list of DatasetBean and ExperimentBean objects. Each of
these entries include information about the datasets or experiments, such as
name, owner id, and shared users’ ids.

The lists of data entries of the repository beans are stored in JSON as an array and
the idCounter is stored as an object. Each object in the array has its own name\value
pairs, as illustrated in Figure 3.3. These data entries are updated using deserialization
of the stored JSON data. For example, if a new dataset should be added to the user’s
repository, the JSON data is retrieved by the DatasetsDAO class upon a request from
the DatasetsServlet class. Then the JSON string is deserialized to a DatasetsRepository
object and a new DatasetBean is added to the list of beans of this object. After the
update of this repository object, it is serialized to JSON format and stored on the disk
again.

Classifier Recommender

An important part of the application is the Classifier Recommender. It basically pre-
dicts some classifiers’ accuracies based on meta-features and regression, as explained in
Section 2.4. When a user uploads a dataset, the classifier recommender experiment is
automatically carried out on it. In this experiment, seven target classifiers are taken into
consideration, namely Naive Bayes, K-NN, LibSVM, MLP, Decision Tree, Randomforest
Weka, and OneR. The classifier recommender experiment is divided in two steps:

2http://flexjson.sourceforge.net/

24

http://flexjson.sourceforge.net/

F
ig

u
re

3.
2:

C
la

ss
D

ia
gr

am
fo

r
th

e
C

ol
la

b
or

at
iv

e
U

se
r

In
te

rf
ac

e

25

Figure 3.3: An Example of stored datasets’ information in JSON format.

1. Regression Step: the class WizardRegressionStep executes this part of the experi-
ment by using an operator called Regressioner that was developed by a co-worker
as part of the PaREn project. First it extracts the meta-features from the input
dataset. Specifically, it extracts landmarking features, described in Subsection 2.2.4.
Then it applies a regression model on the extracted features, in order to predict the
accuracy of the target classifiers. These regression models are trained on datasets
and stored as a case base in order to speed up the prediction task. At the end of
the process the landmarking features and the predicted accuracies are returned as
ExampleSets in a Map, so that they can be viewed by the user.

2. Evaluation Step: after displaying the predictions of the recommended classifiers, the
user can choose one or more classifiers to be evaluated, as depicted in Figure 3.6.
The WizardEvaluationStep class takes the responsibility of evaluating the selected
classifiers. First, an operator called CaseBaseOperator creates an optimized pro-
cess for each of the classifiers. Then this process is run and the accuracies of the
classifiers are computed and returned. Afterwards the optimized pipelines of the
evaluated classifiers are stored in the users experiment results directory, so that the
user can download the required pipelines.

These classifier recommender steps are managed by the class ClassifierRecommender-
Steps whenever the ClassifierRecommenderServlet receives a request from the client, as
depicted in the class diagram in Figure 3.2. To respond to such a request the Clas-
sifierRecommenderServlet reads the experiment result from the disk. An example for
such results is shown in Figure 3.4. The retrieved results are deserialized into an object
of type ClassifierRecommenderResultBean that has a boolean variable called evaluated,
which indicates whether some classifiers are already evaluated or not. If one or more
classifiers are evaluated, then the predicted accuracies were already calculated for all the
classifiers. Otherwise, it is checked whether the results list is empty or not. In case
it is empty the predictions of all the classifiers will be calculated. If the results of the
predicted accuracies are already stored, then they are just returned to the client side.

26

Figure 3.4: An Example of classifier recommender results stored in JSON format.

As depicted in the class diagram in Figure 3.2, a ClassifierBean contains classifier vari-
ables, such as name, predicted accuracy, RMSE, and computed accuracy. By default
the accuracy of any classifier is -1, as the accuracy has to be predicted for the classifier
first. The value of the accuracy is then updated as soon as an evaluation request for the
classifier is successfully completed. The predicted accuracies of the classifiers and their
RMSE values are provided to the user as shown in Figure 3.5. After the user selects the
classifiers to be evaluated and the evaluation completes successfully, two other columns
with the computed accuracy and the downloadable pipeline are presented, as illustrated
in Figure 3.7. The evaluation of the predicted and computed accuracies is performed only
once.

Data Storage Structure

There are two categories of files stored on the server. First, some files are created to
store general information about users, datasets, and experiments in JSON format, which
are then used in the operations of setting, getting, and storing data, as explained above.
These files include an array of JSON objects along with an object representing the next
available id index. Hitherto, three files of this category exist, namely users, datasets,
and experiments, as illustrated in Figure 3.8. The second category of files is either files
uploaded by the users (e.g., datasets) or experiments’ results, such as classifiers’ accuracies
or RapidMiner pipelines. The folder structure of the stored data is shown in Figure 3.8.

27

As illustrated, each user has his own folder, named after his id, that is encapsulated
inside the “Users” folder. Each user’s folder contains two sub-folders namely, “Datasets”
and “Experiments”. The “Datasets” folder contains all the datasets uploaded by the
user, while the “Experiments” folder includes a sub-folder for each user’s experiment.
The experiments folders are named after the experiments’ ids and each folder contains
the results of its experiment. For example, for a classifier recommender experiment the
results are stored in a file named “cars.xrff.results”, where “cars.xrff” is the name of the
dataset which was evaluated in the experiment. In addition to the result file, there are
RapidMiner pipelines, which are stored in XML files saved under a name composed of
the dataset’s name and the classifier’s name (e.g., cars.xrff.NaiveBayes).

28

Figure 3.5: The pattern recognition workspace of the user is shown. In the middle there
is a widget for the dataset anneal that is being evaluated. The computed predicted
accuracies and the RMSE values of the classifiers are listed, so that the user can choose
the appropriate classifier to be evaluated.

29

Figure 3.6: The pattern recognition workspace of the user is shown. In the middle there
is a widget for the dataset “anneal” that is being evaluated. The predicted accuracies
and the RMSE of the classifiers is already computed and the user selected two classifiers
to be evaluated.

30

Figure 3.7: The pattern recognition workspace of the user is shown. In the middle there
is a widget for the dataset “anneal” that is being evaluated. The computed predicted
accuracies and the RMSE of all classifiers evaluated classifiers are listed. In addition,
the computed accuracies of the evaluated classifiers along with a link to the RapidMiner
pipeline are viewed to the user. The user can download any of the evaluated classifiers
pipelines in XML format.

31

Figure 3.8: Stored data files and folders structure.

32

Chapter 4

Evaluation

The main goal of the evaluation is to determine whether landmarking features are useful
for meta-learning or not compared to other meta-features. Accordingly, meta-features
were evaluated by predicting the accuracies of some classifiers and observing the con-
fidence of prediction calculated for the different classifiers. Further experiments were
carried out to observe which landmarkers combinations and settings perform better, try-
ing to correlate landmarkers and classifiers.

4.1 Experiment Setup

The experiments were applied on 90 datasets in total, where 67 datasets were from the
UCI repository (A. Asuncion, 2007) and 23 datasets were from StatLib, as shown in
Table A.1. In order to have reliable accuracy estimates, all chosen datasets have more
than 100 samples. RapidMiner processes were used to manage the experiments. The
target algorithms, for which the accuracy was predicted, are:

• Naive Bayes

• K-NN

• Multilayer Perceptron

• OneR

• Random Forest Weka1

• Decision Tree

• LibSVM

The chosen classifiers origin from different algorithm categories and were chosen because
of their prominence. However, not all chosen classifiers are complex learning algorithms.
The classifers that can be considered as complex are Decision Tree, LibSVM, MLP,and
Random Forest. A grid search parameter optimization was applied on important param-
eters of the target classifiers, as illustrated in Table 4.1. For each of the classifiers, the

1Operator in the Weka plug-in

33

accuracy was computed for all the datasets. These accuracies, along with the dataset
names were stored in a dataset considered as a case base as illustrated in Figure 4.1.
In order to estimate the predicted accuracies of the chosen classifiers and the confidence
of their prediction, regression was applied (King et al., 1995). The results were then
analyzed using different measurements, as described in Subsection 4.1.4. The evaluation
steps are illustrated in Figure 4.1 and are explained in detail in the following subsections.

Step 1

Meta-Features
Extraction:

Landmarking

features
and

Other meta-
features

Target
Classifiers:

Parameter

Optimization
and

Performance
Evaluation

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5

……

Dataset n

Case Base:
Accuracy 1
Accuracy 2
Accuracy 3

….
Accuracy n

Meta-
features 1

Meta-
features 2

Meta-
features 3

…..
Meta-

features n

Step 2

Preprocessing

Parameter
Optimization

Predicted Accuracies
and

RMSE

I
t
e
r
a
t
e

Cross Validation

Epsilon-SVR

Figure 4.1: Flow Chart for the Evaluation. In this chart the evaluation steps are illus-
trated. First the meta-features and the accuracies are computed and stored in the Case
Base. Then a regression model is trained and the predicted accuracies and RMSE are
calculated

4.1.1 Case Base Creation

A dataset that includes all the evaluated dataset names along with their meta-features
and the computed accuracies for each target classifier on these datasets was considered
as a case base. For the sake of reproducibility of the case base, details about its creation
will be provided in the following subsections, however it was created by other PaREn
developers.

34

Classifier Parameter Range[Min, Max] Steps Scale

Decision Tree confidence [1.0E-7, 0.5] 100 linear

LibSVM γ [0.0010, 10.0] 100 logarithmic
C [0.0, 50] 10 logarithmic

K-Nearest Neighbor K [1,500] 100 logarithmic

Multilayer Perceptron Learning rate [1.0E-5, 1.0] 100 logarithmic

Random Forest Weka K [1, 21] 10 linear
Depth [1,2,3,4,5,7,10,20] - -

Table 4.1: The classifiers and their optimized parameters are listed. The grid
search parameters (Range, Steps and Scale) are shown for each parameter.

Target Classifiers and Accuracy Computation

The evaluation of the target classifiers was performed in two steps, using RapidMiner
pipelines:

1. To achieve more accurate classification models a grid search parameter optimization
was applied on important parameters of some target classifiers using a ten-fold cross-
validation. A detailed list of the parameters optimized is provided in Table 4.1

2. The accuracy of each of the classifiers was computed for all the datasets using the
optimized parameters of the first step. The Decision Trees were set to use Gini
index as their classification criterion.

Meta-Features Extraction

The meta-features that were extracted from all the datasets were:

• Simple features: Number of attributes in a dataset, Number of categorical attributes
in a dataset, and Number of samples in a dataset.

• Statistical features: Homogeneity of covariances, Kurtosis, Skew, Canonical dis-
criminant correlation (cancor 1, cancor 2), Variation explained by First four canon-
ical discriminants(fract 1, fract 2), Absolute correlation.

• Information theoretic features: Class entropy that was calculated by the METAL
DCT tool Petrak (2002).

• Landmarking features : The extraction of the landmarking features was performed
using the landmarking operator presented in Section 2.3. The resultant dataset
included the evaluated landmarkers’ accuracy along with the dataset name as at-
tributes. These attributes were joined with the original case base dataset. Different
parameter settings for the landmarking operator were experimented, as outlined in
Subsection 4.1.3.

35

Feature Computed with Percentage computable

Number of Samples Python 100%

Number of categorical attributes Python 100%

Number of numerical attributes Python 100%

Canonical Correlation 1 R 100%

Canonical Correlation 2 R 100%

Fraction of Canonical Correlation 1 R 100%

Fraction of Canonical Correlation 2 R 100%

Absolute Correlation Coefficient Python 89.4%

Skewness Python 100%

Kurtosis Python 100%

Homogeneity of Covariances (SD Ratio) Python 80.5%

Class Entropy DCT 90.2%

Table 4.2: List of data characterization features that were either implemented as part of the
PaREn project in R and Python or were available as part of the METAL data characterization
toolkit (DCT). The last column, represents the percentage of the datasets for which the
corresponding features were extracted usign the specified tool.

The simple, statistical, and information theoretic features were reproduced from the
results reported in the StatLog project (King et al., 1995). These features were extracted
using either the Python and R algorithms that were implemented as part of the PaREn
project, or the DCT toolkit developed by METAL.

In Table 4.2 a list of the most important features and the tools used for their calcula-
tion is provided. As illustrated in the last column of this table, the percentage of datasets
for which the meta-features are extracted differs from one feature to the other. The fea-
tures that were not computed are considered as missing attributes of the case base, in
which all the features and accuracies are stored. In addition, some classifiers’ accuracies
of different datasets were not computed, mainly due to the unreasonable amount of time
they need to be computed. These values that were not computed are called missing labels.

4.1.2 Accuracy prediction

To predict the accuracy values of the classifiers, a regression model was trained on the
meta-features stored in the case base using a leave-one-out cross-validation. LibSVM of
type ε-SVR and radial basis function kernel was used for regression.
To increase the reliability of the regression model, the following steps were performed:

• Missing attributes and labels were filtered from the case base dataset. The classi-
fiers’ computed accuracies were considered as dataset labels. Any example having

36

a missing label was excluded from the dataset, as it would not improve the regres-
sion model. Furthermore, examples having missing meta-features (represented as
dataset attributes) were removed.

• Estimation of the LibSVM parameters C and γ was attained by optimization. Grid
search and leave-one-out cross-validation were used for optimization. The search
range for C and γ was [1, 500] and [0.0001, 2], respectively. For both parameters,
the grid search was performed on a ten step logarithmic scale.

4.1.3 Experiments on Meta-Features

In order to compare the usefulness of meta-features, different experiments were performed:

1. Each feature category described in Subsection 4.1.1 was considered as input features
for the regression model.

2. To check which landmarking features are more useful and which settings are better,
different settings of the landmarking operator were applied on the datasets. Three
experiments were performed using landmarking features extracted by different set-
tings:

(a) Experiment 1: The seven landmakers described in Subsection 2.2.4 were
applied on each dataset, using the default settings of the landmarking operator,
as outlined in Subsection 2.3.2.

(b) Experiment 2: According to Pfahringer et al. (2000), only four landmark-
ers were evaluated. These were: One Nearest Neighbor Learner, Decision
Node Learner, Randomly Chosen Node Learner and Worst Node Learner.
The feature extraction was performed using a ten-fold cross-validation and
the datasets were normalized. Note that in this experiment the normal K-NN
algorithm is used instead of the the elite One Nearest Neighbor that was men-
tioned in Pfahringer et al. (2000). Table A.2 lists the landmarking features
extracted form all the datasets.

(c) Experiment 3: The seven landmarkers were evaluated for all the datasets,
using a ten-fold cross-validation and normalization of the datasets.

3. Some combinations of feature categories were provided as meta-features for the
regression process. These were:

• Simple and Statistical Features

• Simple and Landmarking Features of Experiment 2.

• All feature categories including the landmarking features extracted in Exper-
iment 2 only.

4.1.4 Evaluation Measurements

Confidence of Prediction

To measure the confidence of prediction of the regression model, two approaches were
applied on the results, using RapidMiner functionalities and operators:

37

1. Root Mean Squared Error (RMSE): The RMSE was calculated for each target
classifier in each meta-feature category by

RMSE =

√∑n
k=1(acc

2
computed − acc2predicted)

n
(4.1)

where n is the number of datasets evaluated. In other words, the RMSE gives
feedback about how correct the predicted value might be. This measurement was
calculated for all the experiments that were performed for the different landmarking
features and settings.

2. Correlation between the Predicted and Computed accuracy: This mea-
surement gives feedback about the relation between the predicted and computed
accuracy. It was measured using the RapidMiner operator Correlation Matrix,
which gives as a result the correlation matrix between the attributes. In fact, it
calculates the Pearson product-moment Correlation Coefficient (PMCC), which re-
turns a value between +1 and -1. The negative values indicate that there is no
relation between the attributes. The higher the value of the PMCC, the more
correlated are the variables. This coefficient is calculated by:

rxy =
n
∑
xiyi −

∑
xi

∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

(4.2)

where n is the number of variable values from which the correlation is extracted.
This correlation was calculated for the experiments performed on the landmarking
features only.

Correlation between Landmarkers and Classifiers’ Computed Accuracies

An interesting and important point of study is which landmarkers are related to which
target classifiers. In this context, the correlation between the landmarking features and
computed accuracies of the classifiers was calculated, using the PMCC that is explained
above. The case base was an input dataset for the Correlation Matrix operator, on which
the calculations were performed. A correlation coefficient nearer to the value +1 indicates
a high correlation between a landmarker and a classifier. The correlation was computed
for each of the experiments that included landmarking features only.

4.2 Results and Discussion

4.2.1 Comparison of all Meta-Features

The first experiment conducted was calculating the RMSE for each meta-features category
separately. As a second experiment combinations of meta-features were considered as
input features for the regression model as a basis for prediction. The results of these
experiments are illustrated in Table 4.3 and the following observations can be drawn:

38

RMSE
Classifier
(samples)

Simplea Statisticala Information
Theoreticb

Landmarking
(Pfahringer
settings)

Simple
and Sta-
tistical

Simple
and
Land-
marking

All

Decision
Tree
(n = 61)

0.116 0.111 0.109 0.070 0.116 0.117 0.115

LibSVM
(n = 61)

0.115 0.096 0.109 0.064 0.115 0.116 0.116

Naive Bayes
(n = 68)

0.136 0.121 0.123 0.079 0.137 0.132 0.135

Nearest
Neighbor
(n = 68)

0.123 0.105 0.109 0.053 0.122 0.122 0.122

Multilayer
Perceptron
(n = 57)

0.118 0.104 0.108 0.074 0.118 0.117 0.119

OneR (n =
68)

0.162 0.159 0.105 0.083 0.167 0.164 0.168

Random
Forest
(n = 68)

0.112 0.101 0.099 0.051 0.112 0.109 0.111

a Features described in the STATLOG project King et al. (1995).

b Features extracted using the METAL data characterization toolkit (DCT) Petrak (2002). More details
about the METAL project can be found in http://cordis.europa.eu/esprit/src/26357.htm.

Table 4.3: RMSE for the predicted accuracies based on different meta-feature extraction
approaches. Note, that for each classifier the number of samples (datasets) differs due to
filtering of missing attributes and labels as explained in Subsection 4.1.2. Each RMSE value
is a measure for the confidence of prediction of a classifier. It was found that Landmarking
outperforms all other methods with respect to prediction accuracy.

39

http://cordis.europa.eu/esprit/src/26357.htm

• The number of datasets or samples taken into consideration differs from one clas-
sifier to the other. That is a result of the filtering of meta-features and computed
accuracies, as explained in Subsection 4.1.2. However, the number of datasets for
each classifier was set to a common ground by filtering missing attributes.

• The landmarking features perform best among all the other features for all classi-
fiers, when observing the RMSE values.

• Simple features gave the worst RMSE values compared to the other features, which
indicates the ineffectiveness of these features for predicting classifiers’ accuracy.

• For the classifiers naive Bayes, K-NN, LibSVM and MLP the statistical features
gave the second best confidence of prediction. In addition, information theoretic
features showed better RMSE values than simple features for classifiers based on
decsion node learners, namely Decision Tree, Random Forest and OneR.

• Combining meta-features from different categories gave less assertive predictions. A
possible reason for that may be the increase of the dimensionality of the regression
model, due to the increase of the number of features. Therefore, for more input
features the number of training datasets should be increased, to have a more reliable
regression model. In addition, the more features are combined as input to the
regression model, the higher the probability of the occurrance of the problem: curse
of dimensionality.

• The meta-feature combinations gave nearly the same RMSE results for all the
classifiers. Albeit the best performance of the landmarking features, comparing the
results of the landmarking and statistical features combined with simple features
we see that the difference between their RMSE values is less than 1%, which was
not expected.

This raises up the question of how the features are related to the classifiers and which
features of a category affect the prediction’s confidence. Further combinations, such as
combining statistical and landmarking features, could lead to some interesting results.
However, this will deviate from the idea of avoiding complex computations of meta-
features by using simple landmarking features.

4.2.2 Evaluation of Landmarking Features

As the results showed that landmarking features gave more promising results than the
other features, a more detailed discussion about the landmarking features’ experiments
will be made in this subsection.

Out of 90 datasets used for the experiments only 86 datasets were included in the case
base dataset of these experiments, due to the failure of the evaluation of the four datasets:
trains, profb, splice, and mfeat-pixel. For the trains and profb datasets, the problem
occurred when applying the preprocessing operators. For the mfeat-pixel dataset, the
landmarking operator was preprocessed successfully only if one landmarker was evaluated
at a time. Otherwise, it resulted in an OutOfMemoryError. This might have occurred
due to the large number of categorical attributes (about 240 categorical attributes) it

40

RMSE

Classifier Experiment 1 Experiment 2 Experiment 3
(all landmarkers) (four landmarkers, (all landmarkers,

ten-fold ten-fold

cross-validation) cross-validation)

Decision Tree (n = 76) 0.075 0.071 0.076

LibSVM (n = 76) 0.063 0.061 0.068

Naive Bayes (n = 86) 0.059 0.083 0.057

K-NN (n = 86) 0.053 0.052 0.051

MLP (n = 70) 0.072 0.070 0.077

OneR (n = 84) 0.082 0.079 0.084

Random Forest(n = 86) 0.054 0.050 0.053

Table 4.4: RMSE for the predicted accuracies based on different settings of the land-
marking operator. The first column lists the classifiers for which the accuracies are
predicted and the RMSE is estimated. Note, that for each classifier the number of sam-
ples (datasets) differs due to the filtering of missing attributes and labels as explained in
Subsection 4.1.2. The RMSE column shows the RMSE, for each classifier evaluated on
its corresponding number of datasets. Each RMSE value is a measure for the confidence
of prediction of a classifier.

had. The execution of the linear discriminant analysis operator on the splice dataset
was not successful neither as an encapsulated operator in the landmarking operator nor
independently as a RapidMiner operator; although the preprocessing steps described in
Section 4.1 were applied on the dataset in both cases.

From the results shown in Table 4.4 and Figure 4.2.2, the following information can
be deduced:

• By filtering the missing labels from the case base, the number of datasets taken into
consideration differed from one classifier to the other. For example, OneR had two
missing labels for the datasets: mfeat-fourier and mfeat-karhunen. For LibSVM,
Decision Trees and MLP, 12, 10, and 18 datasets were not evaluated, respectively.

• Comparing the classifiers’ confidence of prediction in different experiments, it can
be noticed that RMSE ranges are almost equivalent:

– Experiment 1: [5.3%, 8.4%]

– Experiment 2: [5.2%, 8.3%]

– Experiment 3: [5.1%, 8.4%]

• The RMSE values are nearly the same for the classifiers in all the experiments. The
difference in the values is less than 1%, except for Naive Bayes.

41

Figure 4.2: The RMSE values of the different experiments of landmarking features are
illustrated as bars. Overall, the RMSE values of Experiment 2 are the lowest, indicating
the highest confidence of prediction.

• Experiment 1 and Experiment 3, the Naive Bayes classifier has a low RMSE value
and the highest correlation coefficient (shown in Table 4.5), indicating the highest
confidence of prediction. A possible reason may be its simplicity, due to the inde-
pendence of attributes or variables taken into consideration in the calculations. It
also does not have any parameters that could affect its performance result. Another
reason may be due to its inclusion as a landmarker, as its RMSE value compared
to the results of Experiment 3 is very low. However, this did not give an RMSE of
value zero, because the landmarker is trained and tested on the same data, whereas
the evaluation is cross-validated.

• Comparing the results of the different experiments it is observed that Experiment
3 has the lowest RMSE values of the classifiers Naive Bayes and K-NN. For the rest
of the classifiers, Experiment 2 showed the most confident predictions.

In Table 4.5 and Figure 4.2.2 the results of the correlation between the computed and
predicted accuracies of the classifiers is depicted. Observing these results, the following
information can be inferred:

• The computed and predicted accuracies are correlated for all the classifiers.

• The correlation values for all the experiments are nearly the same, having a mini-
mum correlation of 0.78 and a maximum correlation of 0.979.

• For the complex classifiers: LibSVM, MLP, and Random Forest the highest cor-
relations were achieved in Experiment 3 with the values 0.898, 0.859, and 0.898,
respectively . However, for the Decision Tree, the computed and predicted accura-
cies were most correlated in Experiment 1.

42

Correlation between predicted and computed acccuracy

Classifier Experiment 1 Experiment 2 Experiment 3
(all landmarkers) (four landmarkers, (all landmarkers,

ten-fold cross-validation) ten-fold cross-validation)

Decision Tree 0.811 0.795 0.787

LibSVM 0.882 0.898 0.852

Naive Bayes 0.923 0.780 0.979

K-NN 0.907 0.907 0.911

MLP 0.837 0.859 0.827

OneR 0.832 0.845 0.820

Random Forest 0.877 0.898 0.893

Table 4.5: The correlation between the computed and predicted accuracies for all the
classifiers are represented in this table. The correlations were calculated based on the
different experiment settings of the landmarker operator. The columns list the Pearson
correlation coefficient of the computed and predicted accuracies for each classifier for all
landmarking experiments.

Figure 4.3: The bar chart represents the correlation between the computed and predicted
accuracies for the evaluated classifiers. The correlations of the different experiments are
all similar. Overall, the correlation of Experiment 2 is the highest compared to the other
experiments.

43

Overall, the RMSE ranges and correlation values of the experiments seem to be
promising. The best results for most of the classifiers were achieved by Experiment
2, which was performed based on the report of Pfahringer et al. (2000). As a visualiza-
tion for the regression results, Figure 4.4 shows a sample of the computed and predicted
accuracies for the LibSVM classifier evaluated in Experiment 2.

4.2.3 Suitable Landmarkers for particular Classifiers

In this subsection, an investigation of which landmarkers are suitable for predicting clas-
sifiers accuracy for a given problem is done. As described in Subsection 4.1.4, the cor-
relation between landmarking features and the classifiers acutal accuracies is calculated
using the Pearson correlation coefficient. From Table 4.6 and Figure 4.5 the following
observations can be deduced:

• Most of the classifiers are highly correlated to One Nearest Neighbor and Naive
Bayes. The correlation of the complex classifiers (Decision Tree, LibSVM, MLP,
and Random Forest) to Naive Bayes landmarker differs to that of One Nearest
Neighbor landmarker by less than 0.1.
Observing the correlation coefficients of these complex classifiers, it is found that
they are most correlated to the One Nearest Neighbor landmarker. A possible
reason may be that the accuracy of One Nearest Neighbor classifier indicates the
complexity of a given problem. This is generally based on the statement that the er-
ror rate of One Nearest Neighbor algorithm is approximately asymptotically bound
between once and twice the Bayes error rate, which is the minimum achievable
error rate given the distribution of the data (Cover and Hart, 1967).

• Contrary to our expectations, the landmarkes and classifers based on decision nodes
are not highly correlated, except for the OneR classifier. For the Decision Tree and
Random Forest, their correlation to the decision node landmarkers (Decision Node,
Worst Node, Average Node, and Randomly Chosen Node) is between 0.260 and
0.526. However, for these classifiers, the Decision Node landmarker comes in the
third place after One Nearest Neighbor and Naive Bayes, with the correlation values
of 0.526 and 0.446.

• The Linear Discriminant landmarker has the lowest correlation to the classifiers
compared to the other landmarkers. Its correlation coefficient values are between
0.277 and 0.350, which indicate its inefficiency as input feature for a prediction
model.

• The highest correlation is between the Naive Bayes landmarker and classifier having
a value of 0.992, which is due to the simplicity of the algorithm, as it has no
attributes that should be optimized.

44

F
ig

u
re

4.
4:

S
am

p
le

ch
ar

ts
fo

r
L

ib
S
V

M
ev

al
u
at

io
n

in
E

x
p

er
im

en
t

2
u
si

n
g

re
gr

es
si

on
.

T
h
e

co
m

p
u
te

d
an

d
p
re

d
ic

te
d

ac
cu

ra
ci

es
ar

e
p
lo

tt
ed

fo
r

al
l

th
e

d
at

as
et

s
u
si

n
g

b
lu

e
an

d
re

d
b
ar

s,
re

sp
ec

ti
ve

ly
.

T
h
es

e
b
ar

s
sh

ow
th

at
th

e
co

m
p
u
te

d
an

d
p
re

d
ic

te
d

ac
cu

ra
cy

va
lu

es
ar

e
cl

os
e

fo
r

m
an

y
d
at

as
et

s.
H

ow
ev

er
,

fo
r

so
m

e
d
at

ae
ts

,s
u
ch

as
,

m
on

k
s-

p
ro

b
le

m
s-

2
te

st
an

d
ti

c-
ta

c-
to

e,
th

e
d
iff

er
n
ce

b
et

w
ee

n
th

e
p
re

d
ic

te
d

an
d

co
m

p
u
te

d
va

lu
e

is
h
ig

h
.

45

Landmarker Decision
Tree

LibSVM Naive
Bayes

K-NN MLP OneR Random
Forest

Linear Dis-
criminant

0.349 0.326 0.277 0.337 0.350 0.319 0.332

One Nearest
Neighbor

0.803 0.881 0.742 0.879 0.837 0.431 0.878

Worst Node 0.352 0.316 0.288 0.232 0.334 0.681 0.260

Decision
Node

0.526 0.438 0.498 0.406 0.507 0.835 0.446

Average Node 0.426 0.343 0.387 0.301 0.400 0.780 0.323

Naive Bayes 0.716 0.808 0.992 0.851 0.833 0.570 0.839

Randomly
Chosen Node

0.437 0.405 0.401 0.343 0.429 0.734 0.374

Table 4.6: Correlation between landmarkers and the computed accuracy of the classi-
fiers. These results are based on the landmarking features extracted in Experiment 3,
where the datasets were normalized and all landmarkers were evaluated using a ten-fold
cross-validation. The correlation is calculated using the Pearson correlation coefficient.
The table represents the correlation matrix between all the classifiers and land markers
specified in the experiment.

Figure 4.5: The RMSE values of the different experiments of landmarking features are
illustrated as bars.

46

Chapter 5

Conclusion and Outlook

The PaREn project aims to develop tools and algorithms, that make pattern recognition
and machine learning easier for non-expert users. In this context, different meta-learning
tools were developed. Meta-learning is the process of learning about learning algorithms.
Several approaches were developed, trying to map problems to the best performant learn-
ing algorithms. In this report, regression was used as a learning model. Meta-features,
which are datasets characteristics, were provided as input for the meta-learning model.
These meta-features are divided into different categories, namely simple, statistical, in-
formation theoretic and landmarking features. The recent experimental features are the
landmarking features. The idea behind landmarking is basically trying to relate simple
algorithms to more complex ones.

As part of the PaREn project, a landmarking operator was developed using the Rapid-
Miner framework. This operator extracts the landmarking features from a given dataset
by basically applying seven fast computable classifiers on it. The landmarkers chosen
were: Naive Bayes, Linear Discriminant, One Nearest Neighbor, Decision Node, Ran-
domly Chosen Node, Worst Node and Average Node. Throughout our evaluation il-
lustrated in Chapter 4, it was depicted that landmarking features are well suited for
meta-learning. The evaluation was carried out on 90 datasets, mostly from the UCI
repository. The meta-features were extracted, in order to predict the accuracy of some
classifiers based on regression. By measuring the RMSE and the correlation between the
actual and predicted accuracies, it was proved that they had the highest confidence of
predictions compared to the other meta-features. As explained in the evaluation, experi-
ments on different landmarking features were performed. Experiment 2, which was based
on the experiment described in Pfahringer et al. (2000), had the most assertive prediction
for most of the classifiers. In this experiment the RMSE range was [5.2%, 8.3%], which
is a highly promising result1.

In this context, the landmarking features can be considered reasonable for developing

1A paper about the developed landmarking operator and the comparison part of the experiments
was accepted in the RapidMiner Community Meeting And Conference - RCOMM 2010.

Sarah Daniel Abdelmessih, Faisal Shafait, Matthias Reif, and Markus Goldstein. Landmarking
for Meta-Learning using RapidMiner. In RCOMM, Dortmund, Germany, September 2010. (accepted
for publication)

47

systems involving classifier recommendation or automatic classifier selection. In fact, a
classifier recommender was developed as part of the PaREn project. This tool was then
integrated into a web-interface, called Collaborative User Interface. This application pro-
vides different functionalities, such as sharing data and experiments, which may affect the
growth of the field of pattern recognition and machine learning positively. Furthermore,
it gives the user the possibility to evaluate a problem, by predicting some classifiers’
accuracies and visualizing them to the user. The user can then choose the suitable algo-
rithms to be evaluated on a given problem. Currently, the developed application handles
XRFF files only. However, it can be simply modified to accept different file types that are
supported by RapidMiner as datasets, but it was not implemented due to the lack of time.

An open point of discussion is: which meta-features are related to which classifiers.
This correlation could lead to a more reliable approach with confident results. In addition,
these correlations can be used to combine different features from different categories, that
may result in a regression model with higher confidence of prediction. However, more
experiments should be performed to get more meta-data about this correlation.
Another important point of discussion, is finding out the features that are most correlated
to the target classifiers and trying to find the best combinations of these features that give
a more reliable regression model, for each classifier. Instead of using the same landmarkers
for predicting accuracies of each classifier, a subset of suitable landmarkers can be used
for that purpose. In this context, automatic feature selection would be a very useful tool.
This will make the process dynamic according to the input problem and the available
features and algorithms.

48

Bibliography

D.J. Newman A. Asuncion. UCI machine learning repository, 2007. URL http://www.

ics.uci.edu/\simmlearn/{MLR}epository.html.

Shawkat Ali and Kate A. Smith. On learning algorithm selection for classification. Applied
Soft Computing, 6(2):119–138, 2006.

Hilan Bensusan and Christophe G. Giraud-Carrier. Discovering task neighbourhoods
through landmark learning performances. In PKDD, pages 325–330, Lyon, France,
September 2000.

Hilan Bensusan and Alexandros Kalousis. Estimating the predictive accuracy of a clas-
sifier. In ECML, volume 2167, pages 25–36, Freiburg, Germany, September 2001.

Pavel B. Brazdil, Carlos Soares, and Joaquim P. da Costa. Ranking learning algorithms:
Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):
251–277, 2003.

Ciro Castiello, Giovanna Castellano, and Anna Maria Fanelli. Meta-data: Characteriza-
tion of input features for meta-learning. In MDAI, pages 457–468, Tsukuba, Japan,
July 2005.

T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21 – 27, jan. 1967.

Joo Gama and Pavel Brazdil. Characterization of classification algorithms. In EPIA,
Lecture Notes in Computer Science, pages 189–200, Madeira Island, Portugal, October
1995.

Christophe Giraud-Carrier. Metalearning - a tutorial. 2008.

R.D. King, C. Feng, and A. Sutherland. Statlog: Comparison of Classification Algorithms
on Large Real-Worlds Problems. Applied Artificial Intelligence, 9(3):289–333, 1995.

Guido Lindner and Rudi Studer. AST: Support for algorithm selection with a cBR
approach. In PKDD, pages 418–423, Prague, Czech Republic, September 1999.

Donald Michie, David J. Spiegelhalter, and Charles C. Taylor, editors. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, New York, NY, 1994.

49

http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html
http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html

Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler. Yale:
Rapid prototyping for complex data mining tasks. In Lyle Ungar, Mark Craven,
Dimitrios Gunopulos, and Tina Eliassi-Rad, editors, KDD ’06: Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 935–940, New York, NY, USA, August 2006. ACM. ISBN 1-59593-339-
5. doi: http://doi.acm.org/10.1145/1150402.1150531. URL http://rapid-i.com/

component/option,com_docman/task,doc_download/gid,25/Itemid,62/.

J. Petrak. The METAL Machine Learning Experimentation Environment V3. 0. 2002.

Bernhard Pfahringer, Hilan Bensusan, and Christophe G. Giraud-Carrier. Meta-learning
by landmarking various learning algorithms. In ICML, pages 743–750, Stanford Uni-
versity, June 2000.

Larry A. Rendell and Howard Cho. Empirical learning as a function of concept character.
Machine Learning, 5:267–298, 1990.

John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

Kate A. Smith-Miles. Cross-Disciplinary Perspectives on Meta-Learning for Algorithm
Selection. ACM Computing Surveys (CSUR), 41(1):25, 2008.

Carlos Soares and Pavel Brazdil. Zoomed ranking: Selection of classification algorithms
based on relevant performance information. In PKDD, volume 1910, pages 126–135,
Lyon, France, September 2000.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning.
Artificial Intelligence Revieww, 18(2):77–95, 2002.

David H. Wolpert and William G. Macready. No free lunch theorems for search. Technical
Report SFI-TR-95-02-101, Santa Fe Institute, Santa Fe, NM, 1995.

50

http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/

Appendix A

Appendix

A.1 List of Datasets used

Table A.1: This table lists the names and sources of the
datasets used in the evaluation.

Dataset Source
analcatdata authorship StatLib
analcatdata boxing1 StatLib
analcatdata boxing2 StatLib
analcatdata braziltourism StatLib
analcatdata broadwaymult StatLib
analcatdata chall101 StatLib
analcatdata creditscore StatLib
analcatdata dmft StatLib
analcatdata germangss StatLib
analcatdata lawsuit StatLib
anneal UCI
arrhythmia UCI
audiology UCI
backache StatLib
balance-scale UCI
biomed StatLib
breast-cancer UCI
breast-w UCI
car UCI
cars StatLib
cars with names StatLib
cjs StatLib
cloud StatLib
cmc UCI
colic UCI
collins StatLib
credit-a UCI

51

Table A.1: This table lists the names and sources of the
datasets used in the evaluation.

Dataset Source
credit-g UCI
cylinder-bands UCI
dermatology UCI
diabetes UCI
ecoli UCI
glass UCI
haberman UCI
hayes-roth train UCI
heart-c UCI
heart-h UCI
heart-statlog UCI
hepatitis UCI
hypothyroid UCI
ionosphere UCI
iris UCI
irish StatLib
kr-vs-kp UCI
letter UCI
liver-disorders UCI
lymph UCI
mfeat-factors UCI
mfeat-fourier UCI
mfeat-karhunen UCI
mfeat-morphological UCI
mfeat-pixel UCI
mfeat-zernike UCI
molecular-biology promoters UCI
monks-problems-1 test UCI
monks-problems-1 train UCI
monks-problems-2 test UCI
monks-problems-2 train UCI
monks-problems-3 test UCI
monks-problems-3 train UCI
mushroom UCI
nursery UCI
optdigits UCI
page-blocks UCI
pendigits UCI
primary-tumor UCI
prnn crabs StatLib
prnn fglass StatLib
prnn synth StatLib

52

Table A.1: This table lists the names and sources of the
datasets used in the evaluation.

Dataset Source
profb StatLib
schizo StatLib
segment UCI
sick UCI
solar-flare 1 UCI
solar-flare 2 UCI
sonar UCI
soybean UCI
spambase UCI
spect test UCI
spectf test UCI
spectrometer UCI
splice UCI
tae UCI
tic-tac-toe UCI
vehicle UCI
vote UCI
vowel UCI
waveform-5000 UCI
wine UCI
zoo UCI

53

A.2 Sample of Landmarking Features computed

54

T
ab

le
A

.2
:

L
an

d
m

ar
k
in

g
fe

at
u
re

s
ex

tr
ac

te
d

fo
r

al
l

th
e

d
at

as
et

s,
u
si

n
g

th
e

la
n
d
m

ar
k
in

g
op

er
at

or
d
es

cr
ib

ed
in

S
ec

ti
on

2.
3,

u
si

n
g

it
s

d
ef

au
lt

se
tt

in
gs

.

D
at

as
et

L
in

ea
r

D
is

-
cr

im
in

an
t

O
n
e

N
N

W
or

st
N

o
d
e

D
ec

is
io

n
N

o
d
e

A
ve

ra
ge

N
o
d
e

N
ai

ve
B

ay
es

R
an

d
om

ly
C

h
o-

se
n

N
o
d
e

an
al

ca
td

at
a

au
th

or
sh

ip
0.

99
9

0.
99

5
0.

40
4

0.
55

3
0.

40
6

0.
99

3
0.

37
7

an
al

ca
td

at
a

b
ox

in
g1

0.
46

7
0.

78
3

0.
66

7
0.

83
3

0.
73

3
0.

89
2

0.
70

0
an

al
ca

td
at

a
b

ox
in

g2
0.

83
3

0.
65

8
0.

58
3

0.
83

3
0.

66
2

0.
84

8
0.

58
3

an
al

ca
td

at
a

b
ra

zi
lt

ou
ri

sm
0.

01
0

0.
65

3
0.

77
4

0.
78

4
0.

77
4

0.
78

6
0.

77
2

an
al

ca
td

at
a

b
ro

ad
w

ay
m

u
lt

0.
78

2
0.

14
1

0.
41

4
0.

50
9

0.
44

3
0.

81
1

0.
41

4
an

al
ca

td
at

a
ch

al
l1

01
0.

50
0

0.
72

6
0.

93
5

0.
93

5
0.

93
5

0.
93

5
0.

93
5

an
al

ca
td

at
a

cr
ed

it
sc

or
e

0.
83

0
0.

71
0

0.
76

0
0.

99
0

0.
79

0
0.

99
0

0.
76

0
an

al
ca

td
at

a
d
m

ft
0.

27
0

0.
17

3
0.

22
7

0.
22

7
0.

21
9

0.
27

6
0.

20
6

an
al

ca
td

at
a

ge
rm

an
gs

s
0.

38
8

0.
00

0
0.

25
0

0.
27

5
0.

25
5

0.
39

3
0.

25
0

an
al

ca
td

at
a

la
w

su
it

0.
94

7
0.

95
8

0.
93

2
0.

95
8

0.
93

7
0.

97
0

0.
95

8
an

n
ea

l
0.

76
2

0.
92

3
0.

76
2

0.
80

2
0.

76
4

0.
49

6
0.

76
2

ar
rh

y
th

m
ia

0.
00

7
0.

53
7

0.
55

1
0.

55
1

0.
54

8
0.

29
9

0.
54

2
au

d
io

lo
gy

0.
00

9
0.

74
0

0.
25

7
0.

32
7

0.
27

1
0.

97
3

0.
26

1
b
ac

ka
ch

e
0.

86
1

0.
79

4
0.

86
1

0.
86

1
0.

86
1

0.
87

2
0.

86
1

b
al

an
ce

-s
ca

le
0.

87
0

0.
78

6
0.

59
0

0.
59

0
0.

59
0

0.
90

9
0.

59
0

b
io

m
ed

0.
76

1
0.

90
0

0.
64

6
0.

82
8

0.
71

9
0.

89
5

0.
82

8
b
re

as
t-

ca
n
ce

r
0.

29
7

0.
65

8
0.

70
3

0.
70

3
0.

71
0

0.
75

9
0.

70
3

b
re

as
t-

w
0.

94
4

0.
95

4
0.

79
0

0.
92

7
0.

88
3

0.
95

9
0.

87
6

ca
r

0.
70

0
0.

75
3

0.
70

0
0.

70
0

0.
70

0
0.

87
4

0.
70

0
ca

rs
0.

72
2

0.
74

6
0.

63
1

0.
71

2
0.

64
8

0.
69

0
0.

64
3

ca
rs

w
it

h
n
am

es
0.

18
0

0.
83

0
0.

63
1

0.
71

2
0.

69
8

0.
93

8
0.

64
3

cj
s

1.
00

0
0.

98
7

0.
26

4
0.

36
5

0.
27

5
0.

65
9

0.
24

4
cl

ou
d

0.
45

4
0.

31
6

0.
33

3
0.

33
3

0.
31

0
0.

38
0

0.
30

6
cm

c
0.

54
1

0.
43

7
0.

42
7

0.
42

8
0.

43
0

0.
50

8
0.

42
7

co
li
c

0.
37

0
0.

75
0

0.
63

0
0.

81
5

0.
65

4
0.

79
1

0.
63

0

55

T
ab

le
A

.2
:

L
an

d
m

ar
k
in

g
fe

at
u
re

s
ex

tr
ac

te
d

fo
r

al
l

th
e

d
at

as
et

s,
u
si

n
g

th
e

la
n
d
m

ar
k
in

g
op

er
at

or
d
es

cr
ib

ed
in

S
ec

ti
on

2.
3,

u
si

n
g

it
s

d
ef

au
lt

se
tt

in
gs

.

D
at

as
et

L
in

ea
r

D
is

-
cr

im
in

an
t

O
n
e

N
N

W
or

st
N

o
d
e

D
ec

is
io

n
N

o
d
e

A
ve

ra
ge

N
o
d
e

N
ai

ve
B

ay
es

R
an

d
om

ly
C

h
o-

se
n

N
o
d
e

co
ll
in

s
0.

16
0

1.
00

0
0.

16
2

1.
00

0
0.

20
8

0.
99

8
0.

16
4

cr
ed

it
-a

0.
44

5
0.

81
7

0.
55

5
0.

85
5

0.
60

3
0.

78
3

0.
66

1
cr

ed
it

-g
0.

70
0

0.
73

1
0.

71
0

0.
70

0
0.

70
1

0.
77

2
0.

70
0

cy
li
n
d
er

-b
an

d
s

0.
42

2
0.

79
6

0.
58

0
0.

93
5

0.
61

0
0.

98
5

0.
57

8
d
er

m
at

ol
og

y
0.

05
5

0.
94

8
0.

35
8

0.
36

1
0.

41
5

0.
99

2
0.

48
6

d
ia

b
et

es
0.

77
2

0.
70

2
0.

65
6

0.
72

7
0.

66
2

0.
76

2
0.

72
7

ec
ol

i
0.

86
0

0.
79

5
0.

44
0

0.
64

6
0.

52
6

0.
86

0
0.

42
9

gl
as

s
0.

63
6

0.
70

1
0.

36
0

0.
47

2
0.

39
0

0.
54

7
0.

36
9

h
ab

er
m

an
0.

75
2

0.
64

1
0.

74
2

0.
74

2
0.

73
9

0.
76

5
0.

74
2

h
ay

es
-r

ot
h

tr
ai

n
0.

54
5

0.
70

5
0.

38
6

0.
47

7
0.

45
5

0.
84

1
0.

47
7

h
ea

rt
-c

0.
45

5
0.

74
2

0.
54

8
0.

74
6

0.
64

9
0.

84
5

0.
74

6
h
ea

rt
-h

0.
36

1
0.

76
2

0.
65

6
0.

81
3

0.
67

5
0.

86
1

0.
63

9
h
ea

rt
-s

ta
tl

og
0.

85
9

0.
76

7
0.

55
9

0.
75

6
0.

62
4

0.
85

9
0.

58
9

h
ep

at
it

is
0.

89
0

0.
79

3
0.

79
4

0.
83

9
0.

80
3

0.
85

2
0.

83
9

h
y
p

ot
h
y
ro

id
0.

92
8

0.
91

8
0.

92
3

0.
95

4
0.

92
5

0.
95

7
0.

93
0

io
n
os

p
h
er

e
0.

88
3

0.
87

8
0.

67
8

0.
83

2
0.

71
3

0.
90

6
0.

71
8

ir
is

0.
86

7
0.

94
7

0.
50

7
0.

66
7

0.
62

0
0.

96
0

0.
64

0
ir

is
h

0.
55

6
0.

98
6

0.
55

6
0.

98
8

0.
69

5
0.

98
2

0.
58

8
k
r-

v
s-

k
p

0.
87

0
0.

85
1

0.
52

2
0.

66
1

0.
55

1
0.

88
3

0.
52

2
le

tt
er

0.
65

5
0.

96
0

0.
04

5
0.

04
5

0.
05

4
0.

64
5

0.
04

5
li
ve

r-
d
is

or
d
er

s
0.

70
7

0.
62

9
0.

58
0

0.
58

0
0.

58
8

0.
55

9
0.

58
0

ly
m

p
h

0.
01

4
0.

77
5

0.
54

7
0.

57
4

0.
60

0
0.

86
5

0.
54

7
m

fe
at

-f
ac

to
rs

0.
10

0
0.

95
9

0.
10

1
0.

18
5

0.
16

1
0.

93
4

0.
19

3
m

fe
at

-f
ou

ri
er

0.
82

6
0.

79
9

0.
11

2
0.

19
2

0.
11

9
0.

79
7

0.
10

1
m

fe
at

-k
ar

h
u
n
en

0.
94

2
0.

96
5

0.
15

4
0.

18
7

0.
11

2
0.

94
8

0.
10

2

56

T
ab

le
A

.2
:

L
an

d
m

ar
k
in

g
fe

at
u
re

s
ex

tr
ac

te
d

fo
r

al
l

th
e

d
at

as
et

s,
u
si

n
g

th
e

la
n
d
m

ar
k
in

g
op

er
at

or
d
es

cr
ib

ed
in

S
ec

ti
on

2.
3,

u
si

n
g

it
s

d
ef

au
lt

se
tt

in
gs

.

D
at

as
et

L
in

ea
r

D
is

-
cr

im
in

an
t

O
n
e

N
N

W
or

st
N

o
d
e

D
ec

is
io

n
N

o
d
e

A
ve

ra
ge

N
o
d
e

N
ai

ve
B

ay
es

R
an

d
om

ly
C

h
o-

se
n

N
o
d
e

m
fe

at
-m

or
p
h
ol

og
ic

al
0.

74
1

0.
65

5
0.

20
0

0.
19

6
0.

19
8

0.
63

2
0.

19
9

m
fe

at
-z

er
n
ik

e
0.

84
3

0.
78

7
0.

10
2

0.
18

6
0.

13
3

0.
76

3
0.

17
6

m
ol

ec
u
la

r-
b
io

lo
gy

p
ro

m
ot

er
s

0.
50

0
0.

75
5

0.
52

8
0.

80
2

0.
61

0
0.

99
1

0.
60

4

m
on

k
s-

p
ro

b
le

m
s-

1
te

st
0.

65
3

0.
52

3
0.

50
0

0.
75

0
0.

54
2

0.
75

0
0.

75
0

m
on

k
s-

p
ro

b
le

m
s-

1
tr

ai
n

0.
50

0
0.

64
9

0.
63

7
0.

73
4

0.
59

1
0.

79
8

0.
54

0
m

on
k
s-

p
ro

b
le

m
s-

2
te

st
0.

67
1

0.
50

2
0.

67
1

0.
67

1
0.

67
1

0.
67

1
0.

67
1

m
on

k
s-

p
ro

b
le

m
s-

2
tr

ai
n

0.
63

9
0.

62
2

0.
62

1
0.

62
1

0.
62

1
0.

63
9

0.
62

1
m

on
k
s-

p
ro

b
le

m
s-

3
te

st
0.

61
3

0.
90

5
0.

52
8

0.
80

6
0.

61
6

0.
97

2
0.

77
8

m
on

k
s-

p
ro

b
le

m
s-

3
tr

ai
n

0.
94

3
0.

74
6

0.
54

1
0.

77
9

0.
60

7
0.

93
4

0.
54

1
m

u
sh

ro
om

0.
48

2
1.

00
0

0.
56

4
0.

98
5

0.
68

8
0.

99
5

0.
71

6
n
u
rs

er
y

0.
33

3
0.

76
5

0.
41

9
0.

71
0

0.
42

2
0.

90
3

0.
41

9
op

td
ig

it
s

0.
93

9
0.

98
7

0.
12

7
0.

19
5

0.
15

6
0.

88
1

0.
19

3
p
ag

e-
b
lo

ck
s

0.
94

0
0.

96
1

0.
90

0
0.

91
2

0.
90

4
0.

90
4

0.
90

0
p

en
d
ig

it
s

0.
87

1
0.

99
4

0.
18

7
0.

20
5

0.
19

0
0.

85
8

0.
20

3
p
ri

m
ar

y
-t

u
m

or
0.

56
9

0.
35

4
0.

24
8

0.
24

8
0.

25
7

0.
57

2
0.

24
8

p
rn

n
cr

ab
s

1.
00

0
0.

98
0

0.
50

0
0.

61
5

0.
53

1
0.

62
0

0.
50

5
p
rn

n
fg

la
ss

0.
63

6
0.

69
7

0.
36

0
0.

47
2

0.
38

4
0.

54
7

0.
36

9
p
rn

n
sy

n
th

0.
85

6
0.

88
0

0.
68

8
0.

85
2

0.
77

0
0.

84
4

0.
68

8
sc

h
iz

o
0.

62
9

0.
62

6
0.

60
0

0.
60

0
0.

54
1

0.
58

8
0.

52
1

se
gm

en
t

0.
70

5
0.

96
9

0.
14

4
0.

28
6

0.
23

4
0.

80
0

0.
14

6
si

ck
0.

95
1

0.
96

2
0.

93
9

0.
96

6
0.

94
0

0.
92

9
0.

93
9

so
la

r-
fl
ar

e
1

0.
72

8
0.

61
3

0.
27

2
0.

52
6

0.
33

8
0.

73
1

0.
30

3
so

la
r-

fl
ar

e
2

0.
21

9
0.

69
3

0.
34

9
0.

61
4

0.
38

1
0.

77
0

0.
61

4
so

n
ar

0.
88

0
0.

86
5

0.
53

4
0.

75
5

0.
55

3
0.

73
1

0.
54

3

57

T
ab

le
A

.2
:

L
an

d
m

ar
k
in

g
fe

at
u
re

s
ex

tr
ac

te
d

fo
r

al
l

th
e

d
at

as
et

s,
u
si

n
g

th
e

la
n
d
m

ar
k
in

g
op

er
at

or
d
es

cr
ib

ed
in

S
ec

ti
on

2.
3,

u
si

n
g

it
s

d
ef

au
lt

se
tt

in
gs

.

D
at

as
et

L
in

ea
r

D
is

-
cr

im
in

an
t

O
n
e

N
N

W
or

st
N

o
d
e

D
ec

is
io

n
N

o
d
e

A
ve

ra
ge

N
o
d
e

N
ai

ve
B

ay
es

R
an

d
om

ly
C

h
o-

se
n

N
o
d
e

so
y
b

ea
n

0.
02

9
0.

91
5

0.
22

1
0.

22
8

0.
21

4
0.

95
2

0.
20

6
sp

am
b
as

e
0.

86
5

0.
90

8
0.

60
6

0.
78

2
0.

64
1

0.
82

1
0.

60
6

sp
ec

t
te

st
0.

92
5

0.
90

4
0.

92
0

0.
92

0
0.

92
0

0.
84

5
0.

92
0

sp
ec

tf
te

st
0.

82
9

0.
70

6
0.

79
6

0.
79

6
0.

79
6

0.
69

1
0.

79
6

sp
ec

tr
om

et
er

0.
00

2
0.

38
1

0.
13

0
0.

10
5

0.
10

8
0.

61
0

0.
10

9
ta

e
0.

57
6

0.
62

3
0.

41
1

0.
37

7
0.

38
4

0.
58

3
0.

41
1

ti
c-

ta
c-

to
e

0.
65

3
0.

67
4

0.
65

3
0.

65
3

0.
65

9
0.

69
8

0.
65

3
ve

h
ic

le
0.

79
6

0.
69

3
0.

26
5

0.
40

0
0.

30
1

0.
47

3
0.

26
0

vo
te

0.
95

9
0.

92
1

0.
61

4
0.

95
6

0.
75

1
0.

90
3

0.
61

4
vo

w
el

0.
58

1
0.

99
2

0.
09

1
0.

16
8

0.
10

7
0.

71
4

0.
16

8
w

av
ef

or
m

-5
00

0
0.

86
9

0.
73

3
0.

33
9

0.
57

3
0.

41
1

0.
80

2
0.

33
9

w
in

e
1.

00
0

0.
95

0
0.

44
4

0.
60

7
0.

56
7

0.
98

9
0.

59
6

zo
o

0.
04

0
0.

97
0

0.
40

6
0.

60
4

0.
53

8
1.

00
0

0.
50

5

58

	Introduction
	Motivation
	Thesis Outline

	Meta-Learning
	State of the art
	Classification
	Regression Analysis
	Different Approaches for Meta-Learning

	Meta-Features Extraction
	Simple Features
	Statistical Features
	Information Theoretic Features
	Landmarking

	Landmarking Operator in RapidMiner
	RapidMiner Terminology
	Landmarking Operator Functionality
	Landmarking Operator Architecture

	Classifier's Accuracy Prediction

	Collaborative User Interface
	Overview
	Application Description
	Tools and Libraries
	Architecture

	Evaluation
	Experiment Setup
	Case Base Creation
	Accuracy prediction
	Experiments on Meta-Features
	Evaluation Measurements

	Results and Discussion
	Comparison of all Meta-Features
	Evaluation of Landmarking Features
	Suitable Landmarkers for particular Classifiers

	Conclusion and Outlook
	Appendix
	List of Datasets used
	Sample of Landmarking Features computed

